Skip to main content

A Hybrid Approach for Robust Corner Matching

  • Conference paper
Robotic Welding, Intelligence and Automation

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 88))

Abstract

Robust and high accuracy corner matching plays an essential role in many applications in computer vision such as camera calibration, 3D reconstruction and robot localization. In this paper, we describe a hybrid approach that can automatically detect and match image corners with high accuracy. Our approach is based on SIFT structure information and sub-pixel Harris corner localization, which is rotation invariant and is localized directly on true image corners detected by the enhanced curvature scale space method. Experimental results show that the proposed method offers an effective solution to automatic robust corner matching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  2. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  3. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. He, X.C., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Proc. of ICPR, pp. 791–794 (2004)

    Google Scholar 

  5. Jacob, M., Unser, M.: Design of steerable filters for feature detection using Canny-like criteria. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1007–1019 (2004)

    Article  Google Scholar 

  6. Lindeberg, T.: Feature detection with automatic scale selection. Inter. J. Comput. Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Inter. J. Comput. Vision 2(60), 91–110 (2004)

    Article  Google Scholar 

  8. Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple object class detection with a generative model. In: Proc of CVPR 2006, pp. 26–36 (2006)

    Google Scholar 

  9. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Inter. J. Comput. Vision 1(60), 63–86 (2004)

    Article  Google Scholar 

  10. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  11. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  12. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc of ICCV 2003, pp. 1470–1478 (2003)

    Google Scholar 

  13. Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2007)

    Article  Google Scholar 

  14. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.-T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal 78(1-2), 87–119 (1995)

    Article  Google Scholar 

  15. Zhao, F., Huang, Q., Gao, W.: Image Matching by Normalized Cross-Correlation. In: Proc. of ICASSP 2006, Toulouse, France, May 14-19, vol. 2, pp. 729–732 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, F., Huang, X., Duan, Y. (2011). A Hybrid Approach for Robust Corner Matching. In: Tarn, TJ., Chen, SB., Fang, G. (eds) Robotic Welding, Intelligence and Automation. Lecture Notes in Electrical Engineering, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19959-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19959-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19958-5

  • Online ISBN: 978-3-642-19959-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics