Skip to main content

Advances in Structure–Activity Relationship Studies on Potassium Channel Modulators

  • Chapter
  • First Online:
Ion Channels and Their Inhibitors

Abstract

Ion channels are part of cell membranes. They control the influx and efflux of ions such as sodium, potassium, calcium, or chloride, as well as ligands of several biochemical processes. Due to this, they play important role in a variety of diseases ranging from the cardiovascular, nervous, immune and endocrine systems to the cancer metastasis. Moreover, a number of chemicals and genetic disorders disrupt functioning of ion channels, which in turn can lead to aggrieved situations. This makes ion channels as potential targets in drug discovery programs. However, because of ion channels’ ubiquitous nature and high variability even within a given family, identification of drugs acting via them with specificity and high therapeutic value is a challenge! With a brief introduction to the fundamental aspects of ion channels, the review chapter explored the structure-activity advancements made on some potassium channel modulators namely, benzodiazepines, cromakalim analogues, benzothiadiazines, khellinone derivatives and other related chemical prototypes. Also, attempts were made to analyze the scope of these and other ion channel modulators in addressing the challenges faced in the chemotherapy of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D-MoRSE:

3D Molecule representation of structures based on electron diffraction

ABC:

ATP-binding cassette

ADMET:

Absorption, distribution, metabolism, elimination and toxicity

ATP:

Adenosine triphosphate

BK-channels:

Big K+-channels

CFTR:

Cystic fibrosis transmembrane conductance regulator

CODESSA:

Comprehensive descriptors for structural and statistical analysis

CoMSIA:

Comparative molecular similarity analysis

CP-MLR:

Combinatorial protocol in multiple linear regression

EC50 :

Half maximal effective concentration

G/PLS:

Genetic partial least squares

GFA:

Genetic function approximation

GRIND:

Grid-independent descriptors

hERG:

Human ether-à-go-go-related gene

HOMO:

Highest occupied molecular orbital

IC50 :

Half maximal inhibitory concentration

I K :

Cardiac rectifier potassium ion current

I Kr :

Rapidly activating ion current

I Ks :

Slowly activating ion current

KATP:

ATP-sensitive K+-channel

K ir/IRK:

Inwardly rectifying K+-channel

Kv:

Voltage-gated K+-channel

LUMO:

Lowest unoccupied molecular orbital

MLR:

Multiple linear regression

MOPAC:

Molecular orbital partial atomic charge

PCA:

Principal component analysis

PCO:

Potassium (K+)-channel opener

PCR:

Principle components in multiple linear regression

PLS:

Partial least square

QSAR:

Quantitative structure–activity relationship

QSTR:

Quantitative structure–toxicity relationship

RASMC:

Rat aortic smooth muscle cells

WHIM:

Weighted holistic invariant molecular descriptors

References

  1. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  2. Camerino DC, Tricarico D, Desaphy JF (2007) Ion channel pharmacology. Neurotherapeutics 4:184–198

    Article  CAS  Google Scholar 

  3. Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8:153–171

    Article  CAS  Google Scholar 

  4. Camerino DC, Desaphy JF, Tricarico D et al (2008) Therapeutic approaches to ion channel diseases. Adv Genet 64:81–145

    Article  CAS  Google Scholar 

  5. Doyle DA, Cabral JM, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  Google Scholar 

  6. Catterall WA (1993) Structure and modulation of Na+ and Ca2+ channels. Ann NY Acad Sci 707:1–19

    Article  CAS  Google Scholar 

  7. Mackinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232–235

    Article  CAS  Google Scholar 

  8. Mackinnon R, Aldrich RW, Lee AW (1993) Functional stoichiometry of Shaker potassium channel inactivation. Science 262:757–759

    Article  CAS  Google Scholar 

  9. Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25:729–749

    Article  CAS  Google Scholar 

  10. Goldstein SAN, Wang KW, Ilan N et al (1998) Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J Mol Med 76:13–20

    Article  CAS  Google Scholar 

  11. Shieh C-C, Coghlan M, Sullivan JP et al (2000) Potassium channels: molecular defects, diseases and therapeutic opportunities. Pharmacol Rev 52:557–593

    CAS  Google Scholar 

  12. Coghlan MJ, Carroll WA, Gopalakrishnan M (2001) Recent developments in the biology and medicinal chemistry of potassium channel modulators: update from a decade of progress. J Med Chem 44:1627–1653

    Article  CAS  Google Scholar 

  13. Conti M (2004) Targeting K+ channels for cancer therapy. J Exp Ther Oncol 4:161–166

    CAS  Google Scholar 

  14. Jahangir A, Terzic A (2005) KATP channel therapeutics at the bedside. J Mol Cell Cardiol 39:99–112

    Article  CAS  Google Scholar 

  15. Kaczorowski GJ, McManus OB, Priest BT et al (2008) Ion channels as drug targets: the next GPCRs. J Gen Physiol 131:399–405

    Article  CAS  Google Scholar 

  16. Sandhiya S, Dkhar SA (2009) Potassium channels in health, disease & development of channel modulators. Indian J Med Res 129:223–232

    CAS  Google Scholar 

  17. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  Google Scholar 

  18. Hansch C, Leo A (1979) Substituent constants for correlation analysis in. Wiley-Interscience, New York

    Google Scholar 

  19. Stewart JJP (2004) Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J Mol Model 10:155–164

    Article  CAS  Google Scholar 

  20. CS Chem3D Ultra® Cambridge Soft Corporation, Cambridge, USA

    Google Scholar 

  21. Katritzky AR, Lobnov V, Karelson M (1994) CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) University of Florida,Gainesville, FL. http://www.codessa-pro.com

  22. Katritzky AR, Perumal S, Petrukhin R et al (2001) Codessa-based theoretical QSPR model for hydantoin HPLC-RT lipophilicities. J Chem Inf Comput Sci 41:569–574

    Article  CAS  Google Scholar 

  23. DRAGON software version 3.0 (2003) Todeschini R, Consonni V, Mauri A, Pavan M, Milano, Italy. http://disat.unimib.it/chm/Dragon.htm

  24. Wold S, Ruhe A, Wold H et al (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comp 5:735–743

    Article  Google Scholar 

  25. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866

    Article  CAS  Google Scholar 

  26. Cerius2 Version 4.10 (2005) Accelrys Inc, San Diego, USA. http://www.accelrys.com/cerius2

  27. Prabhakar YS (2003) A combinatorial approach to the variable selection in multiple linear regression: analysis of Selwood et al. data set – a case study. QSAR Comb Sci 22:583–595

    Article  CAS  Google Scholar 

  28. Vaughan Williams EM (1984) A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 24:129–147

    CAS  Google Scholar 

  29. Echt DS, Liebson MD, Mitchell LB et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324:781–788

    Article  CAS  Google Scholar 

  30. Jurkiewicz NK, Sanguinetti MC (1993) Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ Res 72:75–83

    Article  CAS  Google Scholar 

  31. Hondeghem LM (1992) Development of class III antiarrhythmic agents. J Cardivasc Pharmacol 20:S17–S22

    Article  CAS  Google Scholar 

  32. Selnick HG, Liverton NJ, Baldwin JJ et al (1997) Class III antiarrhythmic activity in vivo by selective blockade of the slowly activating cardiac delayed rectifier potassium current IKs by (R)-2-(2,4-trifluoromethyl)-N-[2-oxo-5-phenyl-1-(2,2,2- trifluoroethyl)-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]acetamide. J Med Chem 40:3865–3868

    Article  CAS  Google Scholar 

  33. Gupta SP, Paleti A, Mekapati SB et al (2005) A quantitative structure-activity relationship study on some Na+ and K+ channel blockers: role of molecular connectivity index. Lett Drug Des Discov 2:287–290

    Article  CAS  Google Scholar 

  34. Edwards G, Weston A-H (1993) The pharmacology of ATP-sensitive channels. Annu Rev Pharmacol Toxicol 33:597–637

    Article  CAS  Google Scholar 

  35. Wickenden AD (2002) K+ Channels as therapeutic drug targets. Pharmacol Ther 94:157–182

    Article  CAS  Google Scholar 

  36. Mannhold R (2004) KATP channel openers: structure-activity relationships and therapeutic potential. Med Res Rev 24:213–266

    Article  CAS  Google Scholar 

  37. Mannhold R, Cruciani G, Weber H et al (1999) 6-Substituted benzopyrans as potassium channel activators: synthesis, vasodilator properties, and multivariate analysis. J Med Chem 42:981–991

    Article  CAS  Google Scholar 

  38. Agrawal VK, Singh J, Gupta M et al (2006) QSAR studies on benzopyran potassium channel activators. Eur J Med Chem 41:360–366

    Article  CAS  Google Scholar 

  39. Lebrun P, Devreux V, Hermann M et al (1989) Similarities between the effects of pinacidil and diazoxide on ionic and secretory events in rat pancreatic islets. J Pharmacol Exp Ther 250:1011–1018

    CAS  Google Scholar 

  40. Quast U (1993) Do the K+ channel openers relax smooth muscle by opening K+ channels? Trends Pharmacol Sci 14:332–337

    Article  CAS  Google Scholar 

  41. Petit P, Hillaire-Buys D, Mir A-K et al (1992) Differential effects of cromakalim on pancreatic vascular resistance and insulin secretion in vitro. Fundam Clin Pharmacol 6:185–190

    Article  CAS  Google Scholar 

  42. Lebrun P, Antoine M-H, Devreux V et al (1990) Paradoxical inhibitory effect of cromakalim on 86Rb outflow from pancreatic islet cells. J Pharmacol Exp Ther 255:948–954

    CAS  Google Scholar 

  43. Sebille S, de Tullio P, Becker B et al (2005) 4,6-Disubstituted 2,2-dimethylchromans structurally related to the K(ATP) channel opener cromakalim: design, synthesis, and effect on insulin release and vascular tone. J Med Chem 48:614–621

    Article  CAS  Google Scholar 

  44. Sharma S, Prabhakar YS, Singh P et al (2008) QSAR study about ATP-sensitive potassium channel activation of cromakalim analogues using CP-MLR approach. Eur J Med Chem 43:2354–2360

    Article  CAS  Google Scholar 

  45. Gerlach U, Brendel J, Lang H-J et al (2001) Synthesis and activity of novel and selective IKs-channel blockers. J Med Chem 44:3831–3837

    Article  CAS  Google Scholar 

  46. Satuluri VSAK, Seelam J, Gupta SP (2008) A quantitative structure-activity relationship study on some series of potassium channel blockers. Med Chem 5:87–92

    Article  Google Scholar 

  47. Atwal KS, Grover GJ, Ahmed SZ et al (1993) Cardioselective anti-ischemic ATP-sensitive potassium channel openers. J Med Chem 36:3971–3974

    Article  CAS  Google Scholar 

  48. Rovnyak GC, Ahmed SZ, Ding CZ et al (1997) Cardioselective antiischemic ATP-sensitive potassium channel (KATP) openers. 5. Identification of 4-(N-aryl)-substituted benzopyran derivatives with high selectivity. J Med Chem 40:24–34

    Article  CAS  Google Scholar 

  49. Satuluri VSAK, Gupta SP (2008) A QSAR study on some series of ATP-sensitive potassium channel openers. Lett Drug Des Discov 5:173–177

    Article  CAS  Google Scholar 

  50. Cecchetti V, Calderone V, Tabarrini O et al (2003) Highly potent 1,4-benzothiazine derivatives as K (ATP)-channel openers. J Med Chem 46:3670–3679

    Article  CAS  Google Scholar 

  51. Carosati E, Lemoine H, Spogli R et al (2005) Binding studies and GRIND/ALMOND-based 3D QSAR analysis of benzothiazine type KATP-channel openers. Bioorg Med Chem 13:5581–5591

    Article  CAS  Google Scholar 

  52. Pastor M, Cruciani G, McLay I et al (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243

    Article  CAS  Google Scholar 

  53. de Tullio P, Boverie S, Becker B et al (2005) 3-Alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides as ATP-sensitive potassium channel openers: effect of 6,7-disubstitution on potency and tissue selectivity. J Med Chem 48:4990–5000

    Article  Google Scholar 

  54. de Tullio P, Becker B, Boverie S et al (2003) Toward tissue-selective pancreatic B-cells KATP channel openers belonging to 3-alkylamino-7-halo-4H-1,2,4-benzothiadiazine 1,1-dioxides. J Med Chem 46:3342–3353

    Article  Google Scholar 

  55. Boverie S, Antoine M-H, Somers F et al (2005) Effect on K(ATP) channel activation properties and tissue selectivity of the nature of the substituent in the 7-and the 3-position of 4H-1,2,4-benzothiadiazine 1,1-dioxides. J Med Chem 48:3492–3503

    Article  CAS  Google Scholar 

  56. Sharma BK, Sharma SK, Singh P et al (2008) Quantitative structure-activity relationship study of ATP-sensitive potassium channel openers: derivatives of 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. J Enzyme Inhib Med Chem 23:1–6

    Article  CAS  Google Scholar 

  57. Sharma BK, Sharma SK, Pilania P et al (2009) A quantitative structure-activity relationship study of ATP-sensitive potassium channel openers: the derivatives of 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. Int J Chem Sci 7:655–671

    CAS  Google Scholar 

  58. Wulff H, Calabresi PA, Allie R et al (2003) The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J Clin Invest 111:1703–1713

    CAS  Google Scholar 

  59. Beeton C, Barbaria J, Giraud P et al (2001) Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol 166:936–944

    CAS  Google Scholar 

  60. Beeton C, Wulff H, Barbaria J et al (2001) Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 98:13942–13947

    Article  CAS  Google Scholar 

  61. Baell JB, Gable RW, Harvey AJ et al (2004) Khellinone derivatives as blockers of voltage-gated potassium channel Kvl.3: synthesis and immunosuppressive activity. J Med Chem 47:2326–2336

    Article  CAS  Google Scholar 

  62. Harvey AJ, Baell JB, Toovey N et al (2006) A new class of blockers of the voltage-gated potassium channel Kv1.3 via modification of the 4- or 7-position of khellinone. J Med Chem 49:1433–1441

    Article  CAS  Google Scholar 

  63. Saini L, Gupta SP, Satuluri VSAK (2009) A QSAR study on some series of sodium and potassium channel blockers. Med Chem 5:570–576

    Article  CAS  Google Scholar 

  64. Yuan P, Leonetti MD, Pico AR et al (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution". Science 329:182–186

    Article  CAS  Google Scholar 

  65. Calderone V (2002) Large-conductance, Ca+2-activated K+ channels: function, pharmacology and drugs. Curr Med Chem 9:1385–1395

    Article  CAS  Google Scholar 

  66. Wu S-N (2003) Large-conductance Ca2+-activated K+ channels: physiological role and pharmacology. Curr Med Chem 10:649–661

    Article  CAS  Google Scholar 

  67. Coi A, Fiamingo FL, Livi O et al (2009) QSAR studies on BK channel activators. Bioorg Med Chem 17:319–325

    Article  CAS  Google Scholar 

  68. Zunkler BJ (2006) Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther 112:12–37

    Article  Google Scholar 

  69. Wang Q, Bowles NE, Towbin JA (1998) The molecular basis of long QT syndrome and prospects for therapy. Mol Med Today 4:382–388

    Article  CAS  Google Scholar 

  70. Rajamani R, Tounge BA, Li J et al (2005) A two-state homology model of the hERG K+ channel: application to ligand binding. Bioorg Med Chem Lett 15:1737–1741

    Article  CAS  Google Scholar 

  71. Song M, Clark M (2006) Development and evaluation of an in silico model for hERG binding. J Chem Inf Model 46:392–400

    Article  CAS  Google Scholar 

  72. Aronov AM (2006) Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers. J Med Chem 49:6917–6921

    Article  CAS  Google Scholar 

  73. Sanchez-Capula JA, Salinas-Stefanon E, Torres-Jacome J et al (2001) Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes. J Pharmacol Exp Ther 297:437–445

    Google Scholar 

  74. Ficker E, Obejero-Paz CA, Zhao S et al (2002) The binding site for channel blockers that rescue misprocessed human long QT syndrome type 2 ether-a-go-go-related gene (HERG) mutations. J Biol Chem 277:4989–4998

    Article  CAS  Google Scholar 

  75. Borosy AP, Keseru K, Penzes I et al (2000) 3D QSAR study of class I antiarrhythmics. J Mol Struct THEOCHEM 503:113–129

    Article  CAS  Google Scholar 

  76. Matyus P, Borosy AP, Varro A et al (1998) Development of pharmacophores for inhibitors of the rapid component of the cardiac delayed rectifier potassium current. Int J Quantum Chem 69:21–30

    Article  CAS  Google Scholar 

  77. Ekins S, Crumb WJ, Sarazan RD et al (2002) Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J Pharmacol Exp Ther 301:427–434

    Article  CAS  Google Scholar 

  78. Cavalli A, Poluzzi E, De Ponti F et al (2002) Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K+ channel blockers. J Med Chem 45:3844–3853

    Article  CAS  Google Scholar 

  79. Rampe D, Murawsky MK, Grau J et al (1998) The antipsychotic agent sertindole is a high affinity antagonist of the human cardiac potassium channel HERG. J Pharmacol Exp Ther 286:788–793

    CAS  Google Scholar 

  80. Pearlstein RA, Vaz RJ, Kang J et al (2003) Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg Med Chem Lett 13:1829–1835

    Article  CAS  Google Scholar 

  81. SYBYL 6.7.2 Tripos Inc., 1699 S. Hanley Rd., St. Louis, MO 631444 USA

    Google Scholar 

  82. Garg D, Gandhi T, Mohan CG (2008) Exploring QSTR and toxicophore of Herg K+ channel blockers using GFA and HypoGen techniques. J Mol Graph Model 26:966–976

    Article  CAS  Google Scholar 

  83. Catalyst, Version 4.10 A. (2005). San Diego, Inc., CA, USA

    Google Scholar 

Download references

Acknowledgements

Authors thank Director, CDRI for extending the library facility and Dr. Shreekant Deshpande, Faculty of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, for critical reading of the draft manuscript (CDRI communication No. 8062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yenamandra S. Prabhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, B.K., Singh, P., Prabhakar, Y.S. (2011). Advances in Structure–Activity Relationship Studies on Potassium Channel Modulators. In: Gupta, S. (eds) Ion Channels and Their Inhibitors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19922-6_8

Download citation

Publish with us

Policies and ethics