Skip to main content

hERG Potassium Channels in Drug Discovery and Development

  • Chapter
  • First Online:
Ion Channels and Their Inhibitors

Abstract

Potassium (K+) channels play a central role in the electrical activity of excitable cells. Although there are variety of potassium channels, scientists have developed immense interest in human ether-a-go-go-related gene (hERG) potassium channels due to their involvement in life-threatening cardiac arrhythmia. hERG is a gene that encodes the pore-forming α-subunit of a voltage-gated potassium channel expressed in nervous and cardiac tissue including atrium, ventricles, purkinje fiber, SA node and AV node. Potassium flow through hERG channel plays an important role in action potential repolarization, particularly in ventricular muscle. Blockade of hERG potassium channel via pharmacological interventions or hereditary mutations of genes encoding the channel is associated with a prolongation of cardiac ventricular repolarization, that is long QT syndrome (LQTS), a disorder that predisposesindividuals to life-threatening arrhythmias and substantial risk of sudden death. Inherited or drug-induced mutations in hERG channel lead to disruption of delayed rectifier potassium current (IKr), increase in cardiac excitability subsequently torsades de pointes and sudden death. A large number of putative disease-causing mutations in hERG have been identified in affected families so far, yet mechanism behind these mutations is unspecified and undistinguished. Therefore, entire paradigm of drug discovery has shifted towards the safety of the new molecules to screen for potential cardiac arrhythmogenic effects. Non-clinical assays are not sensitive enough to accurately predict QT prolongation liabilities in humans. For this reason, International Conference on Harmonization (ICH) safety pharmacology S7B guidelines were proposed for new chemical entities. According to these guidelines, thorough studies (in vitro and in vivo) on QT are required for virtually all newly developed pharmaceutical agents. In this article, an overview on hERG channels, their functions and dysfunctions, therapeutic agents modulating these channels and associated QT prolongation, and assay have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFTR:

Cystic fibrosis transmembrane conductance regulator

cNBD:

C-terminal cyclic nucleotide binding domain

DMSO:

Dimethyl sulfoxide

EAD:

Early after depolarization

ECG:

Electrocardiogram

ER:

Endoplasmic reticulum

EU:

European Union

HEK:

Human embroyonic kidney cells

hERG:

Human ether-a-go-go-related gene

HSP:

Heat shock protein

I:

Current

ICH:

International conference on harmonization

IKi :

Inward rectifier potassium current

IKr :

Delayed rectifier potassium current

IND:

Investigational new drug approval

K+ :

Potassium

Kv :

Voltage-gated Potassium channel

Kv11.1:

hERG Potassium channels

LQTS:

Long QT syndrome

NCE:

New chemical entity

PD:

Pharmacodynamic

PK:

Pharmacokinetic

QTc:

QT interval correction

Rb+ :

Rubidium

SERCA:

Sarcoplasmic ER Ca2+-ATPase

Tdp:

Torsade de pointes

TEA+ :

Tetraethyl ammonium

TMO:

Trimethyl amineoxide

VSD:

Voltage sensing domain

WT:

Wild type

References

  1. Swartz KJ (2004) Towards a structural view of gating in potassium channels. Nat Rev Neurosci 5:905–916

    CAS  Google Scholar 

  2. Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9:323–332

    CAS  Google Scholar 

  3. Zamponi GW, Feng ZP, Zhang L et al (2009) Scaffold-based design and synthesis of potent N-type calcium channel blockers. Bioorg Med Chem Lett 19:6467–6472

    CAS  Google Scholar 

  4. Hancox JC, McPate MJ, El Harchi A et al (2008) The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther 119:118–132

    CAS  Google Scholar 

  5. Gussak I, Litwin J, Kleiman R et al (2004) Drug-induced cardiac toxicity: emphasizing the role of electrocardiography in clinical research and drug development. J Electrocardiol 37:19–24

    Google Scholar 

  6. Durdagi S, Subbotina J, Lees-Miller J et al (2010) Insights into the molecular mechanism of hERG1 channel activation and blockade by drugs. Curr Med Chem 17:3514–3532

    CAS  Google Scholar 

  7. Witchel HJ (2010) Drug-induced hERG Block and Long QT Syndrome. Cardiovasc Ther 1–9

    Google Scholar 

  8. Zareba W (2007) Drug induced QT prolongation. Cardiol J 14:523–533

    Google Scholar 

  9. Abbott GW, Roepke TK (2009) HERG biosynthesis: the positive influence of negative charge. Am J Physiol Heart Circ Physiol 296:H1211–H1212

    CAS  Google Scholar 

  10. Ahrendt E, Braun JE (2010) Channel triage: emerging insights into the processing and quality control of hERG potassium channels by DnaJA proteins 1, 2 and 4. Channels (Austin) 4:335–336

    Google Scholar 

  11. Mannikko R, Overend G, Perrey C et al (2010) Pharmacological and electrophysiological characterization of nine, single nucleotide polymorphisms of the hERG-encoded potassium channel. Br J Pharmacol 159:102–114

    Google Scholar 

  12. Cui J, Melman Y, Palma E et al (2000) Cyclic AMP regulates the HERG K(+) channel by dual pathways. Curr Biol 10:671–674

    CAS  Google Scholar 

  13. Thomsen MB, Volders PG, Beekman JD et al (2006) Beat-to-Beat variability of repolarization determines proarrhythmic outcome in dogs susceptible to drug-induced torsades de pointes. J Am Coll Cardiol 48:1268–1276

    CAS  Google Scholar 

  14. Pages G, Torres AM, Ju P et al (2009) Structure of the pore-helix of the hERG K(+) channel. Eur Biophys J 39:111–120

    CAS  Google Scholar 

  15. Alabi AA, Bahamonde MI, Jung HJ et al (2007) Portability of paddle motif function and pharmacology in voltage sensors. Nature 450:370–375

    CAS  Google Scholar 

  16. Perrin MJ, Subbiah RN, Vandenberg JI et al (2008) Human ether-a-go-go related gene (hERG) K+ channels: function and dysfunction. Prog Biophys Mol Biol 98:137–148

    CAS  Google Scholar 

  17. Antzelevitch C (2007) Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace 9(Suppl 4):iv4–iv15

    Google Scholar 

  18. Baumgartner D, Scholl-Burgi S, Sass JO et al (2007) Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia. J Pediatr 150:192–197, 197.e1

    Google Scholar 

  19. Zhou Z, Gong Q, Ye B et al (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    CAS  Google Scholar 

  20. Li X, Xu J, Li M (1997) The human delta1261 mutation of the HERG potassium channel results in a truncated protein that contains a subunit interaction domain and decreases the channel expression. J Biol Chem 272:705–708

    CAS  Google Scholar 

  21. Gong Q, Keeney DR, Robinson JC et al (2004) Defective assembly and trafficking of mutant HERG channels with C-terminal truncations in long QT syndrome. J Mol Cell Cardiol 37:1225–1233

    CAS  Google Scholar 

  22. Obers S, Staudacher I, Ficker E et al (2010) Multiple mechanisms of hERG liability: K+ current inhibition, disruption of protein trafficking, and apoptosis induced by amoxapine. Naunyn Schmiedebergs Arch Pharmacol 381:385–400

    CAS  Google Scholar 

  23. Staudacher I, Schweizer PA, Katus HA et al (2010) hERG: protein trafficking and potential for therapy and drug side effects. Curr Opin Drug Discov Devel 13:23–30

    CAS  Google Scholar 

  24. Schmitt N, Calloe K, Nielsen NH et al (2007) The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochem Biophys Res Commun 358:304–310

    CAS  Google Scholar 

  25. Chen J, Chen K, Sroubek J et al (2010) Post-transcriptional control of human ether-a-go-go-related gene potassium channel protein by alpha-adrenergic receptor stimulation. Mol Pharmacol 78:186–197

    CAS  Google Scholar 

  26. Mosley CA, Myers SJ, Murray EE et al (2009) Synthesis, structural activity-relationships, and biological evaluation of novel amide-based allosteric binding site antagonists in NR1A/NR2B N-methyl-D-aspartate receptors. Bioorg Med Chem 17:6463–6480

    CAS  Google Scholar 

  27. Wang L, Dennis AT, Trieu P et al (2009) Intracellular potassium stabilizes human ether-a-go-go-related gene channels for export from endoplasmic reticulum. Mol Pharmacol 75:927–937

    CAS  Google Scholar 

  28. Anumonwo JM, Horta J, Delmar M et al (1999) Proton and zinc effects on HERG currents. Biophys J 77:282–298

    CAS  Google Scholar 

  29. Chen J, Sroubek J, Krishnan Y et al (2009) PKA phosphorylation of HERG protein regulates the rate of channel synthesis. Am J Physiol Heart Circ Physiol 296:H1244–H1254

    CAS  Google Scholar 

  30. Vandenberg JI, Varghese A, Lu Y et al (2006) Temperature dependence of human ether-a-go-go-related gene K+ currents. Am J Physiol Cell Physiol 291:C165–C175

    CAS  Google Scholar 

  31. Milnes JT, Witchel HJ, Leaney JL et al (2010) Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37 degrees C: Cisapride versus dofetilide. J Pharmacol Toxicol Methods 61:178–191

    CAS  Google Scholar 

  32. Afrasiabi E, Hietamaki M, Viitanen T et al (2010) Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA-MB-435S melanoma cell proliferation and migration. Cell Signal 22:57–64

    CAS  Google Scholar 

  33. Gustina AS, Trudeau MC (2009) A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels. Proc Natl Acad Sci USA 106:13082–13087

    CAS  Google Scholar 

  34. Hancox JC, James AF (2008) Refining insights into high-affinity drug binding to the human ether-a-go-go-related gene potassium channel. Mol Pharmacol 73:1592–1595

    CAS  Google Scholar 

  35. Delisle BP, Underkofler HA, Moungey BM et al (2009) Small GTPase determinants for the Golgi processing and plasmalemmal expression of human ether-a-go-go related (hERG) K+ channels. J Biol Chem 284:2844–2853

    CAS  Google Scholar 

  36. Hancox JC, Witchel HJ, Varghese A (1998) Alteration of HERG current profile during the cardiac ventricular action potential, following a pore mutation. Biochem Biophys Res Commun 253:719–724

    CAS  Google Scholar 

  37. Ganapathi SB, Kester M, Elmslie KS (2009) State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy. Am J Physiol Cell Physiol 296:C701–C710

    CAS  Google Scholar 

  38. Jiang M, Zhang M, Maslennikov IV et al (2005) Dynamic conformational changes of extracellular S5-P linkers in the hERG channel. J Physiol 569:75–89

    CAS  Google Scholar 

  39. Babij P, Askew GR, Nieuwenhuijsen B et al (1998) Inhibition of cardiac delayed rectifier K+ current by overexpression of the long-QT syndrome HERG G628S mutation in transgenic mice. Circ Res 83:668–678

    CAS  Google Scholar 

  40. Perrin MJ, Kuchel PW, Campbell TJ et al (2008) Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-a-go-go-related gene channels. Mol Pharmacol 74:1443–1452

    CAS  Google Scholar 

  41. Potet F, Petersen CI, Boutaud O et al (2009) Genetic screening in C. elegans identifies rho-GTPase activating protein 6 as novel HERG regulator. J Mol Cell Cardiol 46:257–267

    CAS  Google Scholar 

  42. Ritchie TJ, Macdonald SJ (2009) The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discov Today 14:1011–1020

    CAS  Google Scholar 

  43. Sanguinetti MC, Mitcheson JS (2005) Predicting drug-hERG channel interactions that cause acquired long QT syndrome. Trends Pharmacol Sci 26:119–124

    CAS  Google Scholar 

  44. Singh JN, Kumar S, Berhe AH et al (2007) QT prolongation: paradigm shift in drug discovery and development. Curr Res Inform Pharm Sci 8:6–12

    Google Scholar 

  45. Pollard CE, Abi Gerges N, Bridgland-Taylor MH et al (2010) An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk. Br J Pharmacol 159:12–21

    CAS  Google Scholar 

  46. Ponte ML, Keller GA, Di Girolamo G (2010) Mechanisms of drug induced QT interval prolongation. Curr Drug Saf 5:44–53

    CAS  Google Scholar 

  47. Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350:1013–1022

    CAS  Google Scholar 

  48. Wysowski DK, Bacsanyi J (1996) Cisapride and fatal arrhythmia. N Engl J Med 335:290–291

    CAS  Google Scholar 

  49. Shah RR (2005) Drugs, QT interval prolongation and ICH E14: the need to get it right. Drug Saf 28:115–125

    Google Scholar 

  50. Drolet B, Simard C, Roden DM (2004) Unusual effects of a QT-prolonging drug, arsenic trioxide, on cardiac potassium currents. Circulation 109:26–29

    CAS  Google Scholar 

  51. Mathie A (2010) Ion channels as novel therapeutic targets in the treatment of pain. J Pharm Pharmacol 62:1089–1095

    CAS  Google Scholar 

  52. Stary A, Wacker SJ, Boukharta L et al (2010) Toward a consensus model of the HERG potassium channel. ChemMedChem 5:455–467

    CAS  Google Scholar 

  53. Shimizu W, Moss AJ, Wilde AA et al (2009) Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol 54:2052–2062

    CAS  Google Scholar 

  54. Chartrand E, Arnold AA, Gravel A et al (2010) Potential role of the membrane in hERG channel functioning and drug-induced long QT syndrome. Biochim Biophys Acta 1798:1651–1662

    CAS  Google Scholar 

  55. Larsen AP, Olesen SP, Grunnet M et al (2010) Pharmacological activation of IKr impairs conduction in guinea pig hearts. J Cardiovasc Electrophysiol 21:923–929

    Google Scholar 

  56. Witchel HJ (2010) Emerging trends in ion channel-based assays for predicting the cardiac safety of drugs. IDrugs 13:90–96

    CAS  Google Scholar 

  57. Hong HK, Park MH, Lee BH et al (2010) Block of the human ether-a-go-go-related gene (hERG) K+ channel by the antidepressant desipramine. Biochem Biophys Res Commun 394:536–541

    CAS  Google Scholar 

  58. Kang J, Chen XL, Wang H et al (2005) Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. Mol Pharmacol 67:827–836

    CAS  Google Scholar 

  59. Zhou J, Augelli-Szafran CE, Bradley JA et al (2005) Novel potent human ether-a-go-go-related gene (hERG) potassium channel enhancers and their in vitro antiarrhythmic activity. Mol Pharmacol 68:876–884

    CAS  Google Scholar 

  60. Yang HT, Sun CF, Cui CC et al (2009) HERG-F463L potassium channels linked to long QT syndrome reduce I(Kr) current by a trafficking-deficient mechanism. Clin Exp Pharmacol Physiol 36:822–827

    CAS  Google Scholar 

  61. Thai KM, Windisch A, Stork D et al (2010) The hERG potassium channel and drug trapping: insight from docking studies with propafenone derivatives. ChemMedChem 5:436–442

    CAS  Google Scholar 

  62. Yap YG, Camm AJ (1999) Arrhythmogenic mechanisms of non-sedating antihistamines. Clin Exp Allergy 29(Suppl 3):174–181

    CAS  Google Scholar 

  63. Rajput SK, Singh JN, Sharma SS (2010) Evaluation of terfenadine and ketoconazole-induced QT prolongation in conscious telemetered guinea pigs. Pharmacol Rep 62:683–688

    CAS  Google Scholar 

  64. Hansen RS, Diness TG, Christ T et al (2006) Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Mol Pharmacol 69:266–277

    CAS  Google Scholar 

  65. Hansen RS, Diness TG, Christ T et al (2006) Biophysical characterization of the new human ether-a-go-go-related gene channel opener NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N′-(3′-trifluoromethylphenyl)urea]. Mol Pharmacol 70:1319–1329

    CAS  Google Scholar 

  66. Zeng H, Lozinskaya IM, Lin Z et al (2006) Mallotoxin is a novel human ether-a-go-go-related gene (hERG) potassium channel activator. J Pharmacol Exp Ther 319:957–962

    CAS  Google Scholar 

  67. Lazzara R (1989) Amiodarone and torsade de pointes. Ann Intern Med 111:549–551

    CAS  Google Scholar 

  68. Zhou Z, Vorperian VR, Gong Q et al (1999) Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J Cardiovasc Electrophysiol 10:836–843

    CAS  Google Scholar 

  69. Sadanaga T, Ogawa S (2007) Bepridil produces prominent bradycardia-dependent QT prolongation in patients with structural heart disease. J Electrocardiol 40:426–431

    Google Scholar 

  70. Barrows B, Cheung K, Bialobrzeski T et al (2009) Extracellular potassium dependency of block of HERG by quinidine and cisapride is primarily determined by the permeant ion and not by inactivation. Channels (Austin) 3:239–248

    Google Scholar 

  71. Kamiya K, Niwa R, Morishima M et al (2008) Molecular determinants of hERG channel block by terfenadine and cisapride. J Pharmacol Sci 108:301–307

    CAS  Google Scholar 

  72. Paakkari I (2002) Cardiotoxicity of new antihistamines and cisapride. Toxicol Lett 127:279–284

    CAS  Google Scholar 

  73. Drolet B, Rousseau G, Daleau P et al (2000) Domperidone should not be considered a no-risk alternative to cisapride in the treatment of gastrointestinal motility disorders. Circulation 102:1883–1885

    CAS  Google Scholar 

  74. Claassen S, Zunkler BJ (2005) Comparison of the effects of metoclopramide and domperidone on HERG channels. Pharmacology 74:31–36

    CAS  Google Scholar 

  75. Michael G, Dempster J, Kane KA et al (2007) Potentiation of E-4031-induced torsade de pointes by HMR1556 or ATX-II is not predicted by action potential short-term variability or triangulation. Br J Pharmacol 152:1215–1227

    CAS  Google Scholar 

  76. Esch JJ, Kantoch MJ (2008) Torsades de Pointes ventricular tachycardia in a pediatric patient treated with fluconazole. Pediatr Cardiol 29:210–213

    Google Scholar 

  77. Han S, Zhang Y, Chen Q et al (2010) Fluconazole inhibits hERG K(+) channel by direct block and disruption of protein trafficking. Eur J Pharmacol 650(1):138–144

    Google Scholar 

  78. Stark P, Fuller RW, Wong DT (1985) The pharmacologic profile of fluoxetine. J Clin Psychiatry 46:7–13

    CAS  Google Scholar 

  79. Leonardi ET, Azmitia EC (1994) MDMA (ecstasy) inhibition of MAO type A and type B: comparisons with fenfluramine and fluoxetine (Prozac). Neuropsychopharmacology 10:231–238

    CAS  Google Scholar 

  80. Alvarez PA, Pahissa J (2010) QT alterations in psychopharmacology: proven candidates and suspects. Curr Drug Saf 5:97–104

    CAS  Google Scholar 

  81. Stauderman KA, Gandhi VC, Jones DJ (1992) Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: possible Ca(2+)-channel inhibition. Life Sci 50:2125–2138

    CAS  Google Scholar 

  82. Rae JL, Rich A, Zamudio AC et al (1995) Effect of Prozac on whole cell ionic currents in lens and corneal epithelia. Am J Physiol 269:C250–C256

    CAS  Google Scholar 

  83. Backer JM, Wjasow C, Zhang Y (1997) In vitro binding and phosphorylation of insulin receptor substrate 1 by the insulin receptor. Role of interactions mediated by the phosphotyrosine-binding domain and the pleckstrin-homology domain. Eur J Biochem 245:91–96

    CAS  Google Scholar 

  84. Rajamani S, Eckhardt LL, Valdivia CR et al (2006) Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol 149:481–489

    CAS  Google Scholar 

  85. Varriale P (2001) Fluoxetine (Prozac) as a cause of QT prolongation. Arch Intern Med 161:612

    CAS  Google Scholar 

  86. Sanguinetti MC (1990) Na+1-activated and ATP-sensitive K+ channels in the heart. Prog Clin Biol Res 334:85–109

    CAS  Google Scholar 

  87. Bischoff U, Schmidt C, Netzer R et al (2000) Effects of fluoroquinolones on HERG currents. Eur J Pharmacol 406:341–343

    CAS  Google Scholar 

  88. Kang J, Wang L, Chen XL et al (2001) Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol 59:122–126

    CAS  Google Scholar 

  89. von Moltke LL, Greenblatt DJ, Duan SX et al (1994) In vitro prediction of the terfenadine-ketoconazole pharmacokinetic interaction. J Clin Pharmacol 34:1222–1227

    CAS  Google Scholar 

  90. Dumaine R, Roy ML, Brown AM (1998) Blockade of HERG and Kv1.5 by ketoconazole. J Pharmacol Exp Ther 286:727–735

    CAS  Google Scholar 

  91. Krantz MJ, Rowan SB, Schmittner J et al (2007) Physician awareness of the cardiac effects of methadone: results of a national survey. J Addict Dis 26:79–85

    Google Scholar 

  92. Weiss R, Mevissen M, Hauser DS et al (2002) Inhibition of human and pig ureter motility in vitro and in vivo by the K(+) channel openers PKF 217-744b and nicorandil. J Pharmacol Exp Ther 302:651–658

    CAS  Google Scholar 

  93. Katapadi K, Kostandy G, Katapadi M et al (1997) A review of erythromycin-induced malignant tachyarrhythmia–torsade de pointes. A case report. Angiology 48:821–826

    CAS  Google Scholar 

  94. Antzelevitch C, Sun ZQ, Zhang ZQ et al (1996) Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol 28:1836–1848

    CAS  Google Scholar 

  95. Rampe D, Murawsky MK (1997) Blockade of the human cardiac K+ channel Kv1.5 by the antibiotic erythromycin. Naunyn Schmiedebergs Arch Pharmacol 355:743–750

    CAS  Google Scholar 

  96. Drici MD, Knollmann BC, Wang WX et al (1998) Cardiac actions of erythromycin: influence of female sex. JAMA 280:1774–1776

    CAS  Google Scholar 

  97. Sekkarie MA (1997) Torsades de pointes in two chronic renal failure patients treated with cisapride and clarithromycin. Am J Kidney Dis 30:437–439

    CAS  Google Scholar 

  98. Woywodt A, Grommas U, Buth W et al (2000) QT prolongation due to roxithromycin. Postgrad Med J 76:651–653

    CAS  Google Scholar 

  99. Su Z, Martin R, Cox BF et al (2004) Mesoridazine: an open-channel blocker of human ether-a-go-go-related gene K+ channel. J Mol Cell Cardiol 36:151–160

    CAS  Google Scholar 

  100. Eap CB, Crettol S, Rougier JS et al (2007) Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin Pharmacol Ther 81(5):719–728

    CAS  Google Scholar 

  101. Maremmani I, Pacini M, Cesaroni C et al (2005) QTc interval prolongation in patients on long-term methadone maintenance therapy. Eur Addict Res 11:44–49

    Google Scholar 

  102. Routhier DD, Katz KD, Brooks DE (2007) QTc prolongation and torsades de pointes associated with methadone therapy. J Emerg Med 32:275–278

    Google Scholar 

  103. Chouabe C, Drici MD, Romey G et al (2000) Effects of calcium channel blockers on cloned cardiac K+ channels IKr and IKs. Therapie 55:195–202

    CAS  Google Scholar 

  104. Chouabe C, Drici MD, Romey G et al (1998) HERG and KvLQT1/IsK, the cardiac K+ channels involved in long QT syndromes, are targets for calcium channel blockers. Mol Pharmacol 54:695–703

    CAS  Google Scholar 

  105. Anson BD, Weaver JG, Ackerman MJ et al (2005) Blockade of HERG channels by HIV protease inhibitors. Lancet 365:682–686

    CAS  Google Scholar 

  106. Drolet B, Rousseau G, Daleau P et al (2001) Pimozide (Orap) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J Cardiovasc Pharmacol Ther 6:255–260

    CAS  Google Scholar 

  107. Kongsamut S, Kang J, Chen XL et al (2002) A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur J Pharmacol 450:37–41

    CAS  Google Scholar 

  108. Kang J, Wang L, Cai F et al (2000) High affinity blockade of the HERG cardiac K(+) channel by the neuroleptic pimozide. Eur J Pharmacol 392:137–140

    CAS  Google Scholar 

  109. Cubeddu LX (2009) Iatrogenic QT abnormalities and fatal arrhythmias: mechanisms and clinical significance. Curr Cardiol Rev 5:166–176

    Google Scholar 

  110. Grenadier E, Keidar S, Alpan G et al (1980) Prenylamine-induced ventricular tachycardia and syncope controlled by ventricular pacing. Br Heart J 44:330–334

    CAS  Google Scholar 

  111. Sanguinetti MC, Chen J, Fernandez D et al (2005) Physicochemical basis for binding and voltage-dependent block of hERG channels by structurally diverse drugs. Novartis Found Symp 266:159–166; discussion 166–170

    CAS  Google Scholar 

  112. Ando K, Sugiyama A, Takahara A et al (2007) Analysis of proarrhythmic potential of antipsychotics risperidone and olanzapine in anesthetized dogs. Eur J Pharmacol 558:151–158

    CAS  Google Scholar 

  113. Haverkamp W, Breithardt G, Camm AJ et al (2000) The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 47:219–233

    CAS  Google Scholar 

  114. Gluais P, Bastide M, Grandmougin D et al (2004) Risperidone reduces K+ currents in human atrial myocytes and prolongs repolarization in human myocardium. Eur J Pharmacol 497:215–222

    CAS  Google Scholar 

  115. Gluais P, Bastide M, Caron J et al (2002) Risperidone prolongs cardiac action potential through reduction of K+ currents in rabbit myocytes. Eur J Pharmacol 444:123–132

    CAS  Google Scholar 

  116. Botchway AN, Turner MA, Sheridan DJ et al (2003) Electrophysiological effects accompanying regression of left ventricular hypertrophy. Cardiovasc Res 60:510–517

    CAS  Google Scholar 

  117. Magyar J, Banyasz T, Bagi Z et al (2002) Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn Schmiedebergs Arch Pharmacol 366:350–356

    CAS  Google Scholar 

  118. Brown K, Levy H, Brenner C et al (1993) Overdose of risperidone. Ann Emerg Med 22:1908–1910

    CAS  Google Scholar 

  119. Sanguinetti MC, Jiang C, Curran ME et al (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    CAS  Google Scholar 

  120. Wang J, Best PM (1994) Characterization of the potassium channel from frog skeletal muscle sarcoplasmic reticulum membrane. J Physiol 477(Pt 2):279–290

    CAS  Google Scholar 

  121. Yap YG, Camm J (2000) Risk of torsades de pointes with non-cardiac drugs. Doctors need to be aware that many drugs can cause qt prolongation. BMJ 320:1158–1159

    CAS  Google Scholar 

  122. Zimbroff DL, Kane JM, Tamminga CA et al (1997) Controlled, dose-response study of sertindole and haloperidol in the treatment of schizophrenia. Sertindole Study Group. Am J Psychiatry 154:782–791

    CAS  Google Scholar 

  123. Simons FE, Simons KJ (1994) The pharmacology and use of H1-receptor-antagonist drugs. N Engl J Med 330:1663–1670

    CAS  Google Scholar 

  124. Tashibu H, Miyazaki H, Aoki K et al (2005) QT PRODACT: in vivo QT assay in anesthetized dog for detecting the potential for QT interval prolongation by human pharmaceuticals. J Pharmacol Sci 99:473–486

    CAS  Google Scholar 

  125. Martin RL, Su Z, Limberis JT et al (2006) In vitro preclinical cardiac assessment of tolterodine and terodiline: multiple factors predict the clinical experience. J Cardiovasc Pharmacol 48:199–206

    CAS  Google Scholar 

  126. Davis AS (1998) The pre-clinical assessment of QT interval prolongation: a comparison of in vitro and in vivo methods. Hum Exp Toxicol 17:677–680

    CAS  Google Scholar 

  127. Dumotier BM, Georgieva AV (2007) Preclinical cardio-safety assessment of torsadogenic risk and alternative methods to animal experimentation: the inseparable twins. Cell Biol Toxicol 23:293–302

    CAS  Google Scholar 

  128. Towart R, Linders JT, Hermans AN et al (2009) Blockade of the I(Ks) potassium channel: an overlooked cardiovascular liability in drug safety screening? J Pharmacol Toxicol Methods 60:1–10

    CAS  Google Scholar 

  129. Pugsley MK (2005) Methodology used in safety pharmacology: appraisal of the state-of-the-art, the regulatory issues and new directions. J Pharmacol Toxicol Methods 52:1–5

    CAS  Google Scholar 

  130. Anonymous (2000) The European Agency for the Evaluation of Medicinal Product. Human Medicine Evaluation Unit. ICH Topic S7. Safety Pharmacology Studies for Human Pharmaceuticals. Note for Guidance on Safety Pharmacology Studies in Human Pharmaceuticals. (CPMP/ICH/539/00)

    Google Scholar 

  131. Friedrichs GS, Patmore L, Bass A (2005) Non-clinical evaluation of ventricular repolarization (ICH S7B): results of an interim survey of international pharmaceutical companies. J Pharmacol Toxicol Methods 52:6–11

    CAS  Google Scholar 

  132. Anonymous (2005) ICH Harmonised Tripartite Guideline, The Non-clinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals S7B. Recommended for adoption at step 4 of the ICH process on12 May 2005 by the ICH Steering Committee. ICH; http://www.ich.org/

  133. Shah RR (2005) Drugs, QTc interval prolongation and final ICH E14 guideline: an important milestone with challenges ahead. Drug Saf 28:1009–1028

    CAS  Google Scholar 

  134. Aronov AM, Goldman BB (2004) A model for identifying HERG K+ channel blockers. Bioorg Med Chem 12:2307–2315

    CAS  Google Scholar 

  135. Doddareddy MR, Klaasse EC, Shagufta et al (2010) Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. ChemMedChem 5:716–729

    Google Scholar 

  136. Fenu LA, Teisman A, De Buck SS et al (2009) Cardio-vascular safety beyond hERG: in silico modelling of a guinea pig right atrium assay. J Comput Aided Mol Des 23:883–895

    CAS  Google Scholar 

  137. Su BH, Shen MY, Esposito EX et al (2010) In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J Chem Inf Model 50:1304–1318

    CAS  Google Scholar 

  138. Nilsson MF, Danielsson C, Skold AC et al (2010) Improved methodology for identifying the teratogenic potential in early drug development of hERG channel blocking drugs. Reprod Toxicol 29:156–163

    CAS  Google Scholar 

  139. Suter W (2006) Predictive value of in vitro safety studies. Curr Opin Chem Biol 10:362–366

    CAS  Google Scholar 

  140. Ducroq J, Moha ou Maati H, Guilbot S et al (2009) Dexrazoxane protects the heart from acute doxorubicin-induced QT prolongation: a key role for I(Ks). Br J Pharmacol 159:93–101

    Google Scholar 

  141. Toyoshima S, Kanno A, Kitayama T et al (2005) QT PRODACT: in vivo QT assay in the conscious dog for assessing the potential for QT interval prolongation by human pharmaceuticals. J Pharmacol Sci 99:459–471

    CAS  Google Scholar 

  142. Takahara A, Sasaki R, Nakamura M et al (2009) Clobutinol delays ventricular repolarization in the guinea pig heart: comparison with cardiac effects of HERG K+ channel inhibitor E-4031. J Cardiovasc Pharmacol 54:552–559

    CAS  Google Scholar 

  143. Cheng HC, Incardona J (2009) Models of torsades de pointes: effects of FPL64176, DPI201106, dofetilide, and chromanol 293B in isolated rabbit and guinea pig hearts. J Pharmacol Toxicol Methods 60:174–184

    CAS  Google Scholar 

  144. Roden DM (2004) Human genomics and its impact on arrhythmias. Trends Cardiovasc Med 14:112–116

    CAS  Google Scholar 

  145. Lazzerini PE, Capecchi PL, Laghi-Pasini F (2010) Anti-Ro/SSA antibodies and cardiac arrhythmias in the adult: facts and hypotheses. Scand J Immunol 72:213–222

    CAS  Google Scholar 

  146. Morganroth J (2007) Evaluation of the effect on cardiac repolarization (QTc interval) of oncologic drugs. Ernst Schering Res Found Workshop (59):171–184

    Google Scholar 

  147. Brembilla-Perrot B, Beurrier D, Terrier de la Chaise A (1994) Criteria of QRS duration in relationship to the age of myocardial infarction. Herz 19:235–242

    CAS  Google Scholar 

  148. Lehmann MH, Suzuki F, Fromm BS et al (1994) T wave “humps” as a potential electrocardiographic marker of the long QT syndrome. J Am Coll Cardiol 24:746–754

    CAS  Google Scholar 

  149. Miyazaki H, Tagawa M (2002) Rate-correction technique for QT interval in long-term telemetry ECG recording in beagle dogs. Exp Anim 51:465–475

    CAS  Google Scholar 

  150. Holzgrefe HH, Cavero I, Gleason CR (2007) Analysis of the nonclinical telemetered ECG: impact of logging rate and RR bin width in the dog and cynomolgus monkey. J Pharmacol Methods 56:34–42

    CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Govt. of India, New Delhi and CSIR, New Delhi for the financial support. Moreover, authors are thankful of Mr. Shivsharan Balbhim Kharatmal for his critical help in preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, J.N., Sharma, S.S. (2011). hERG Potassium Channels in Drug Discovery and Development. In: Gupta, S. (eds) Ion Channels and Their Inhibitors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19922-6_6

Download citation

Publish with us

Policies and ethics