Skip to main content

Chloride Ion Channels: Structure, Functions, and Blockers

  • Chapter
  • First Online:

Abstract

Chloride ion channels have been found to play crucial roles in the development of human diseases, for example, mutations in the genes encoding Cl channels lead to a variety of deleterious diseases in muscle, kidney, bone, and brain, including myotonia congenita, dystrophia myotonica, cystic fibrosis, osteopetrosis, and epilepsy, and similarly their activation is supposed to be responsible for the progression of glioma in the brain and the growth of malaria-parasite in the red blood cells. Thus, the study of the structure, function, and blockers of Cl channels seems to be of great importance. This article therefore presents all important classes of Cl channels with a detail of their structures, functions, and blockers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CaCC:

Ca2+-activated chloride Cl channels

CFTR:

Cystic fibrosis transmembrane conductance regulator

CLCs:

Cl channels

CLICs:

Chloride intracellular channels

CTB:

Cynotriphenylborate

Cyclic-AMP:

Cyclic adenosine monophosphate

Cyclic-GMP:

Cyclic guanosine monophosphate

DIDS:

4,4′-Diisothiocyanostilbene-2,2′-disulfonate

DNDS:

4,4′-Dinitrodisulfonic stilbene

ENaC:

Epithelial Na+ conductance

ER:

Epithelium reticulum

GABA:

γ-Aminobutyric acid

GST:

Glutathione S transferase

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

IAA:

Indanylooxyacetic acid

LGICs:

Ligand-gated ion channels

MOPS:

3-(N-morpholino)propanesulfonic acid

NBFs:

Nucleotide binding folds

ORCCs:

Outward rectifying chloride channels

PTN:

Picrotin

PTX:

Picrotoxin

PTZ:

Pentylenetetylenetetrazole

SITS:

4-Acetamide-4′-isothiocyanostilbene-2,2′-disulfonate

TMs:

Transmembrane domains

WT:

Wild type

References

  1. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    CAS  Google Scholar 

  2. Hille B (1991) Ion channels, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  3. Puljak L, Kilic G (2006) Emerging roles of chloride channels in human diseases. Biochim Biophys Acta 1762:404–413

    CAS  Google Scholar 

  4. Merzak A, Pilkington GJ (1997) Molecular and cellular pathology of intrinsic brain tumours. Cancer Metastasis Rev 16:155–177

    CAS  Google Scholar 

  5. Ransom CB, O’Neal JT, Sontheimer H (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21:7674–7683

    CAS  Google Scholar 

  6. Romisch K (2005) Protein targeting from malaria parasites to host erythrocytes. Traffic 6:706–709

    Google Scholar 

  7. Breman JG, Alilio MS, Mills A (2004) Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71:1–15

    Google Scholar 

  8. Martin RE, Henry RI, Abbey JL et al (2005) The ‘permeome’ of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol 6:R26

    Google Scholar 

  9. Jentsch TJ, Stein V, Weinreich F et al (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    CAS  Google Scholar 

  10. Landry DW, Reitman M, Cragoe EJ Jr et al (1987) Epithelial chloride channel. Development of inhibitory ligands. J Gen Physiol 90:779–798

    CAS  Google Scholar 

  11. Singh H (2010) Two decades with dimorphic chloride intracellular channels (CLICs). FEBS Lett 584:2112–2121

    CAS  Google Scholar 

  12. Miller C, White MM (1984) Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci USA 81:2772–2775

    CAS  Google Scholar 

  13. Bauer CK, Steinmeyer K, Schwarz JR et al (1991) Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc Natl Acad Sci USA 88:11052–11056

    CAS  Google Scholar 

  14. Middleton RE, Pheasant DJ, Miller C (1994) Purification, reconstitution, and subunit composition of a voltage-gated chloride channel from Torpedo electroplax. Biochemistry 33:13189–13198

    CAS  Google Scholar 

  15. Middleton RE, Pheasant DJ, Miller C (1996) Homodimeric architecture of a CLC-type chloride ion channel. Nature 383:337–340

    CAS  Google Scholar 

  16. Ludewig U, Pusch M, Jentsch TJ (1996) Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383:340–343

    CAS  Google Scholar 

  17. Fahlke C, Knittle T, Gurnett CA et al (1997) Subunit stoichiometry of human muscle chloride channels. J Gen Physiol 109:93–104

    CAS  Google Scholar 

  18. Dutzler A, Campbell EB, Cadene M et al (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294

    CAS  Google Scholar 

  19. Mindell JA, Maduke M, Miller C et al (2001) Projection structure of a CLC type chloride channel at 6.5 Å resolution. Nature 409:219–223

    CAS  Google Scholar 

  20. Weinreich F, Jentsch TJ (2001) Pores formed by single subunits in mixed dimers of different ClC chloride channels. J Biol Chem 276:2347–2353

    CAS  Google Scholar 

  21. Maduke M, Pheasant DJ, Miller C (1999) High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen Physiol 114:713–722

    CAS  Google Scholar 

  22. Lorenz C, Pusch M, Jentsch TJ (1996) Heteromultimeric ClC chloride channel with novel properties. Proc Natl Acad Sci USA 93:13362–13366

    CAS  Google Scholar 

  23. Miller C (1982) Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci 299:401–411

    CAS  Google Scholar 

  24. Saviane C, Conti F, Push M (1999) The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol 113:457–468

    CAS  Google Scholar 

  25. Estévez R, Jentsch TJ (2002) CLC chloride channels: correlating structure with function. Curr Opin Struct Biol 12:531–539

    Google Scholar 

  26. Schmidt-Rose T, Jentsch TJ (1997) Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci USA 94:7633–7638

    CAS  Google Scholar 

  27. Fahlke C, Yu HT, Beck CL et al (1997) Pore-forming segments in voltage-gated chloride channels. Nature 390:529–532

    CAS  Google Scholar 

  28. Fahlke C, Rüdel R, Mitrovic N et al (1995) An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels. Neuron 15:463–472

    CAS  Google Scholar 

  29. Pusch M, Ludewig U, Rehfeldt A et al (1995) Gating of the voltage-dependent chloride channel ClC-0 by the permeant anion. Nature 373:527–531

    CAS  Google Scholar 

  30. Chen TY, Miller C (1996) Nonequilibrium gating and voltage dependence of the ClC-0 Cl channel. J Gen Physiol 108:237–250

    CAS  Google Scholar 

  31. Hanke W, Miller C (1983) Single chloride channels from Torpedo electroplax. Activation by proteins. J Gen Physiol 82:25–45

    CAS  Google Scholar 

  32. Richard EA, Miller C (1990) Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247:1208–1210

    CAS  Google Scholar 

  33. Rychkov GY, Pusch M, Astill DS et al (1996) Concentration and pH dependence of skeletal muscle chloride channel ClC-1. J Physiol (Lond) 497:423–435

    CAS  Google Scholar 

  34. Rychkov GY, Pusch M, Roberts ML et al (1998) Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol 111:653–665

    CAS  Google Scholar 

  35. Schriever AM, Friedrich T, Pusch M et al (1999) ClC chloride channels in Caenorhabditis elegans. J Biol Chem 274:34238–34244

    CAS  Google Scholar 

  36. Koch MC, Steinmeyer K, Lorenz C et al (1992) The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257:797–800

    CAS  Google Scholar 

  37. Steinmeyer K, Klocke R, Ortland C et al (1991) Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308

    CAS  Google Scholar 

  38. Bösl MR, Stein V, Hübner C et al (2001) Male germ cells and photoreceptors, both dependent on close cell–cell interactions, degenerate upon ClC-2 Cl channel disruption. EMBO J 20:1289–1299

    Google Scholar 

  39. Estévez R, Better T, Stein V et al (2001) Barttin is a Cl-channel beta-subunit crucial for renal Cl-reassertion and inner ear K+-secretion. Nature 414:558–561

    Google Scholar 

  40. Simon DB, Bindra RS, Mansfield TA et al (1997) Mutations in the chloride channel gene, CLCNKB, cause Barter’s syndrome type III. Nat Genet 17:171–178

    CAS  Google Scholar 

  41. Birkenhäger R, Otto E, Schürmann MJ et al (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    Google Scholar 

  42. Jentsch TJ (2007) Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 578:633–640

    CAS  Google Scholar 

  43. Gunther W, Luchow A, Cluzeaud F, Vandewalle A et al (1998) ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95:8075–8080

    CAS  Google Scholar 

  44. Edwards JC, Kahl CR (2010) Chloride channels of intracellular membranes. FEBS Lett 584:2102–2111

    CAS  Google Scholar 

  45. Plans V, Rickheit G, Jentsch TJ (2009) Physiological roles of CLC Cl(−)/H(+) exchangers in renal proximal tubules. Pflugers Arch 458:23–37

    CAS  Google Scholar 

  46. Graves AR, Curran PK, Smith CL et al (2008) The Cl/H+antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–792

    CAS  Google Scholar 

  47. Kornak U, Casper D, Bösl MR et al (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    CAS  Google Scholar 

  48. Frattini A, Pangrazio A, Susani L et al (2003) Chloride channel ClCN7 mutations are responsible for severe, recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747

    CAS  Google Scholar 

  49. Chu K, Snyder R, Econs MJ (2006) Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties. J Bone Miner Res 21:1089–1097

    CAS  Google Scholar 

  50. Henriksen K, Gram J, Neutzsky-Wulff AV et al (2009) Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7. Biochem Biophys Res Commun 378:804–809

    CAS  Google Scholar 

  51. Kasper D, Planells-Cases R, Fuhrman JC et al (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079–1091

    CAS  Google Scholar 

  52. Barasch J, Kiss B, Prince A et al (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352:70–73

    CAS  Google Scholar 

  53. Barriere H, Bagdany M, Bossard F et al (2009) Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles. Mol Biol Cell 20:3125–3141

    CAS  Google Scholar 

  54. Haggie PM, Verkman AS (2009) Defective organellar acidification as a cause of cystic fibrosis lung disease: reexamination of a recurring hypothesis. Am J Physiol Lung Cell Mol Physiol 296:L859–L867

    CAS  Google Scholar 

  55. Anderson MP, Gregory RJ, Thomson S et al (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253:202–205

    CAS  Google Scholar 

  56. Bear CE, Li CH, Kartner N et al (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818

    CAS  Google Scholar 

  57. Sheppard DN, Rich DP, Ostedgaard LS et al (1993) Mutations in CFTR associated with mild-disease-form Cl channels with altered pore properties. Nature 362:160–164

    CAS  Google Scholar 

  58. Nagel G, Hwang TC, Nastiuk KL et al (1992) The protein kinase A-regulated Cl channel resembles the cystic fibrosis transmembrane conductance regulator. Nature 360:81–84

    CAS  Google Scholar 

  59. Horowitz B, Tsung SS, Hart P et al (1993) Alternative splicing of CFTR Cl channels in heart. Am J Physiol Heart Circ Physiol 264:H2214–H2220

    CAS  Google Scholar 

  60. Boucher RC, Stutts MJ, Knowles MR (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78:1245–1252

    CAS  Google Scholar 

  61. Egan M, Flotte T, Afione S et al (1992) Defective regulation of outwardly rectifying Cl channels by protein kinase A corrected by insertion of CFTR. Nature 358:581–584

    CAS  Google Scholar 

  62. Gabriel SE, Clarke LL, Boucher RC et al (1993) CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363:263–266

    CAS  Google Scholar 

  63. Alvarez DLRD, Canessa CM, Fyfe GK et al (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594

    Google Scholar 

  64. Peterson OH (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol (Lond) 448:1–51

    Google Scholar 

  65. Peterson OH, Philpott HG (1980) Mouse pancreatic acinar cells: the anion selectivity of the acetylcholine-opened chloride pathway. J Physiol (Lond) 306:481–492

    Google Scholar 

  66. Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl channels: homing in on an elusive channel species. Prog Neurobiol 60:247–289

    CAS  Google Scholar 

  67. Mayer ML (1985) A calcium-activated chloride current generates the after-depolarization of rat sensory neurons in culture. J Physiol (Lond) 364:217–239

    CAS  Google Scholar 

  68. Scott RH, Sutton KG, Griffin A et al (1995) Aspects of calcium-activated chloride currents: a neuronal perspective. Pharmacol Ther 66:535–565

    CAS  Google Scholar 

  69. Sorota S (1999) Insights into the structure, distribution and function of the cardiac chloride channels. Cardiovasc Res 42:361–376

    CAS  Google Scholar 

  70. Pacaud P, Loirand G, Lavie JL et al (1989) Calcium-activated chloride current in rat vascular smooth muscle cells in short-term primary culture. Pfügers Arch 413:629–636

    CAS  Google Scholar 

  71. Nishimoto I, Wagner JA, Schulman H et al (1991) Regulation of Cl channels by multifunctional CaM kinase. Neuron 6:547–555

    CAS  Google Scholar 

  72. Schumann MA, Gardner P, Raffin TA (1993) Recombinant human tumor necrosis factor alpha induces calcium oscillation and calcium-activated chloride current in human neutrophils. The role of calcium/calmodulin-dependent protein kinase. J Boil Chem 268:2134–2140

    CAS  Google Scholar 

  73. Wagner JA, Cozens AL, Schulman H et al (1991) Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase. Nature 349:793–796

    CAS  Google Scholar 

  74. Kidd JF, Thorn P (2000) Intracellular Ca2+ and Cl channel activation in secretory cells. Annu Rev Physiol 62:493–513

    CAS  Google Scholar 

  75. Uchida S, Sasaki S, Nitika K et al (1995) Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1. J Clin Invest 95:104–113

    CAS  Google Scholar 

  76. Waldegger S, Jentsch TJ (2000) Functional and structural analysis of ClC-K chloride channels involved in renal disease. J Biol Chem 275:24527–24533

    CAS  Google Scholar 

  77. Reifarth FW, Amasheh S, Clauss W et al (1997) The Ca2+-inactivated Cl channel at work: selectivity, blocker kinetics and transport visualization. J Membr Biol 155:95–104

    CAS  Google Scholar 

  78. Arreola J, Melvin JE, Begenisich T (1998) Differences in the regulation of Ca2+-activated Cl channels in colonic and parotid secretory cells. Am J Physiol Cell Physiol 274:C161–C166

    CAS  Google Scholar 

  79. Morris AP, Frizzel RA (1993) Ca2+-dependent Cl channels in undifferentiated human colonic cells (HT-29).II. Regulation and rundown. Am J Physiol Cell Physiol 264:C977–C985

    CAS  Google Scholar 

  80. Dascal N, Gillo B, Lass Y (1985) Role of calcium mobilization in mediation of acetylcholine-evoked chloride currents in Xenopus laevis oocytes. J Physiol (Lond) 366:299–313

    CAS  Google Scholar 

  81. Ishikawa T (1996) A bicarbonate-and weak acid-permeable chloride conductance controlled by cytosolic Ca2+ and ATP in rat submandibular acinar cells. J Membr Biol 153:147–159

    CAS  Google Scholar 

  82. Wang YX, Kotlikoff MI (1997) Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 94:14918–14923

    CAS  Google Scholar 

  83. Zhorov BS, Bregestovski PD (2000) Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships. Biophys J 78:1786–1803

    CAS  Google Scholar 

  84. Changeux JP, Galzi JL, Devillers-Thiery A et al (1992) The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis. Q Rev Biophys 25:395–432

    CAS  Google Scholar 

  85. Galzi JL, Changeux JP (1995) Neuronic nicotinic receptors: molecular organization and regulations. Neuropharmacology 34:563–582

    CAS  Google Scholar 

  86. Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244

    CAS  Google Scholar 

  87. Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurons. J Physiol (Lond) 385:243–286

    CAS  Google Scholar 

  88. Polenzani L, Woodward RM, Miledi R (1991) Expression of mammalian gamma- aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc Natl Acad Sci USA 88:4318–4322

    CAS  Google Scholar 

  89. Kaupmann K, Huggel K, Heid J et al (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptor. Nature 386:239–246

    CAS  Google Scholar 

  90. Sieghart W (1995) Structure and pharmacology of gamma-aminobutyric acids A receptor subtypes. Pharmacol Rev 47:181–234

    CAS  Google Scholar 

  91. Grenningloh G, Gundelfinger E, Schmitt B et al (1987) Glycine vs GABA receptors. Nature 330:25–26

    CAS  Google Scholar 

  92. Grenningloh G, Pribilla I, Prior P et al (1990) Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor. Neuron 4:963–970

    CAS  Google Scholar 

  93. Greferath U, Brandstatter H, Wassle H et al (1994) Differential expression of glycine receptor subunits in the retina of the rat: a study using immunohistochemistry and in situ hybridization. Vis Neurosci 11:721–729

    CAS  Google Scholar 

  94. Yadid G, Goldstein DS, Pacak K et al (1995) Functional alpha 3-glycine receptors in rat adrenal. Eur J Pharmacol 288:399–401

    CAS  Google Scholar 

  95. Miller GW, Schnellmann RG (1994) A putative cytoprotective receptor in the kidney: relation to the neuronal strychnine-sensitive glycine receptor. Life Sci 55:27–34

    CAS  Google Scholar 

  96. Ikejima K, Qu W, Stachlewitz RF et al (1997) Kupffer cells contain a glycine-gated chloride channel. Am J Physiol Gastrointest Liver Physiol 272:G1581–G1586

    CAS  Google Scholar 

  97. Meizel S (1997) Amino acid neurotransmitter receptor/chloride channels of mammalian sperm and the acrosome reaction. Biol Reprod 56:569–574

    CAS  Google Scholar 

  98. Bohlhalter S, Mohler H, Fritschy JM (1994) Inhibitory neurotransmission in rat spinal cord: co-localization of glycine- and GABAA-receptors at GABAergic synaptic contacts demonstrated by triple immunofluoroscence staining. Brain Res 642:59–69

    CAS  Google Scholar 

  99. Furuyama T, Sato M, Sato K et al (1992) Co-expression of glycine receptor beta subunit and GABAA receptor gamma subunit mRNA in the rat dorsal root ganglion cells. Brain Res 12:335–338

    CAS  Google Scholar 

  100. Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296:496–505

    CAS  Google Scholar 

  101. Olisen RW, Delorey TM, Gordey M et al (1999) GABA receptor function and epilepsy. Adv Neurol 79:499–510

    Google Scholar 

  102. Baulac S, Huberfeld G, Gourfinkel-An I et al (2001) First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 28:46–48

    CAS  Google Scholar 

  103. Wallace RH, Marini C, Petrou S et al (2001) Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28:49–52

    CAS  Google Scholar 

  104. Heiss NS, Poustka A (1997) Genomic structure of a novel chloride channel gene, CLIC2, in Xq28. Genomics 45:224–228

    CAS  Google Scholar 

  105. Landry D, Sullivan S, Nicolaides M et al (1993) Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J Biol Chem 268:14948–14955

    CAS  Google Scholar 

  106. Landry DW, Akabas MH, Redhead C et al (1989) Purification and reconstitution of chloride channels from kidney and trachea. Science 244:1469–1472

    CAS  Google Scholar 

  107. Edwards JC, Kapadia S (2000) Regulation of the bovine kidney microsomal chloride channel p64 by p59fyn, a Src family tyrosine kinase. J Biol Chem 275:31826–31832

    CAS  Google Scholar 

  108. Edwards JC, Tulk B, Schlesinger PH (1998) Functional expression of p64, an intracellular chloride channel protein. J Membr Biol 163:119–127

    CAS  Google Scholar 

  109. Ashley RH (2003) Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins (review). Mol Membr Biol 20:1–11

    CAS  Google Scholar 

  110. Cromer BA, Morton CJ, Board PG et al (2002) From glutathione transferase to pore in a CLIC. Eur Biophys J 31:356–364

    CAS  Google Scholar 

  111. Littler DR, Harrop SJ, Goodchild SC et al (2010) The enigma of the CLIC proteins: ion channels, redox proteins, enzymes, scaffolding proteins? FEBS Lett 584:2093–2101

    CAS  Google Scholar 

  112. Elter A, Hartel A, Sieben C et al (2007) A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J Biol Chem 282:8786–8792

    CAS  Google Scholar 

  113. Singh H, Ashley RH (2007) CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol Membr Biol 24:41–52

    CAS  Google Scholar 

  114. Singh H, Ashley RH (2006) Redox regulation of CLIC1 by cysteine residues associated with the putative channel pore. Biophys J 90:1628–1638

    CAS  Google Scholar 

  115. Singh H, Cousin MA, Ashley RH (2007) Functional reconstitution of mammalian ‘chloride intracellular channels’ CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin. FEBS J 274:6306–6316

    CAS  Google Scholar 

  116. Hartzell HC, Qu Z, Yu K et al (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to Best disease and other retinopathies. Physiol Rev 88:639–672

    CAS  Google Scholar 

  117. Kunzelmann K, Kongsuphol P, Aldehni F et al (2009) Bestrophin and TMEM16-Ca(2+) activated Cl(−) channels with different functions. Cell Calcium 46:233–241

    CAS  Google Scholar 

  118. Barro-Soria R, Aldehni F, Almaca J et al (2010) ER-localized bestrophin 1 activates Ca(2+)-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflügers Arch. doi:10.1007/s0042400907450

    Google Scholar 

  119. Marmorstein LY, Wu J, McLaughlin P et al (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 127:577–589

    CAS  Google Scholar 

  120. Soroceanu L, Manning TJ, Sontheimer H (1999) Modulation of glioma cell migration and invasion using Cl(−) and K(+) ion channel blockers. J Neurosci 19:5942–5954

    CAS  Google Scholar 

  121. Olsen ML, Schade S, Lyons SA et al (2003) Expression of voltage-gated chloride channels in human glioma cells. J Neurosci 23:5572–5582

    CAS  Google Scholar 

  122. Alkhalil A, Cohn JV, Wagner MA et al (2004) Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood 104:4279–4286

    CAS  Google Scholar 

  123. Kirk K, Horner HA, Elford BC et al (1994) Transport of diverse substrates into malaria- infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem 269:3339–3347

    CAS  Google Scholar 

  124. Jentsch TJ, Maritzen T, Zdebik AA (2005) Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest 115:2039–2046

    CAS  Google Scholar 

  125. Rees MI, Lewis TM, Kwok JB et al (2002) Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11:853–860

    CAS  Google Scholar 

  126. Zhou L, Chillag KL, Nigro MA (2002) Hyperekplexia: a treatable neurogenetic disease. Brain Dev 24:669–674

    Google Scholar 

  127. Shiang R, Ryan SG, Zhu YZ et al (1993) Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5:351–358

    CAS  Google Scholar 

  128. Rees MI, Andrew M, Jawad S et al (1994) Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the alpha 1 subunit of the inhibitory glycine receptor. Hum Mol Genet 3:2175–2179

    CAS  Google Scholar 

  129. Steinmeyer K, Lorenz C, Pusch M et al (1994) Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J 13:737–743

    CAS  Google Scholar 

  130. Mankodi A, Urbinati CR, Yuan QP et al (2001) Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 10:2165–2170

    CAS  Google Scholar 

  131. Charlet BN, Savkur RS, Singh G et al (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53

    Google Scholar 

  132. Mankodi A, Takahashi MP, Jiang H et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44

    CAS  Google Scholar 

  133. Haug K, Warnstedt M, Alekov AK et al (2003) Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 33:527–532

    CAS  Google Scholar 

  134. Schlingmann KP, Konrad M, Jeck N et al (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350:1314–1319

    CAS  Google Scholar 

  135. Birkenhager R, Otto E, Schurmann MJ et al (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    CAS  Google Scholar 

  136. Lloyd SE, Pearce SH, Fisher SE et al (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    CAS  Google Scholar 

  137. Fisher SE, Black GC, Lloyd SE et al (1994) Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent’s disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet 3:2053–2059

    CAS  Google Scholar 

  138. Fisher SE, van Bakel I, Lloyd SE et al (1995) Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis). Genomics 29:598–606

    CAS  Google Scholar 

  139. Cleiren E, Benichou O, Van Hul E et al (2001) Albers–Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867

    CAS  Google Scholar 

  140. Kornak U, Kasper D, Bosl MR et al (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    CAS  Google Scholar 

  141. Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  Google Scholar 

  142. Cohn JA, Friedman KJ, Noone PG et al (1998) Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 339:653–658

    CAS  Google Scholar 

  143. Sharer N, Schwarz M, Malone G et al (1998) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339:645–652

    CAS  Google Scholar 

  144. Weiss FU, Simon P, Bogdanova N et al (2005) Complete cystic fibrosis transmembrane conductance regulator gene sequencing in patients with idiopathic chronic pancreatitis and controls. Gut 54:1456–1460

    CAS  Google Scholar 

  145. Ninis VN, Kylync MO, Kandemir M et al (2003) High frequency of T9 and CFTR mutations in children with idiopathic bronchiectasis. J Med Genet 40:530–535

    CAS  Google Scholar 

  146. Bombieri C, Benetazzo M, Saccomani A et al (1998) Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease. Hum Genet 103:718–722

    CAS  Google Scholar 

  147. Andrieux J, Audrezet MP, Frachon I et al (2002) Quantification of CFTR splice variants in adults with disseminated bronchiectasis, using the TaqMan fluorogenic detection system. Clin Genet 62:60–67

    CAS  Google Scholar 

  148. Casals T, De-Gracia J, Gallego M et al (2004) Bronchiectasis in adult patients: an expression of heterozygosity for CFTR gene mutations. Clin Genet 65:490–495

    CAS  Google Scholar 

  149. Chillon M, Casals T, Mercier B et al (1995) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 332:1475–1480

    CAS  Google Scholar 

  150. Daudin M, Bieth E, Bujan L et al (2000) Congenital bilateral absence of the vas deferens: clinical characteristics, biological parameters, cystic fibrosis transmembrane conductance regulator gene mutations, and implications for genetic counseling. Fertil Steril 74:1164–1174

    CAS  Google Scholar 

  151. Kaplan E, Shwachman H, Perlmutter AD et al (1968) Reproductive failure in males with cystic fibrosis. N Engl J Med 279:65–69

    CAS  Google Scholar 

  152. Augarten A, Yahav Y, Kerem BS et al (1994) Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet 344:1473–1474

    CAS  Google Scholar 

  153. Sun H, Tsunenari T, Yau KW et al (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99:4008–4013

    CAS  Google Scholar 

  154. Petrukhin K, Koisti MJ, Bakall B et al (1998) Identification of the gene responsible for Best macular dystrophy. Nat Genet 19:241–247

    CAS  Google Scholar 

  155. Marquardt A, Stohr H, Passmore LA et al (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525

    CAS  Google Scholar 

  156. Allikmets R, Seddon JM, Bernstein PS et al (1999) Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies. Hum Genet 104:449–453

    CAS  Google Scholar 

  157. Zhang JJ, Jacob TJ (1994) ATP-activated chloride channel inhibited by an antibody to P glycoprotein. Am J Physiol 267:C1095–C1102

    CAS  Google Scholar 

  158. Zhang JJ, Jacob TJ (1996) Volume regulation in the bovine lens and cataract. The involvement of chloride channels. J Clin Invest 97:971–978

    CAS  Google Scholar 

  159. Zhang JJ, Jacob TJ, Valverde MA et al (1994) Tamoxifen blocks chloride channels. A possible mechanism for cataract formation. J Clin Invest 94:1690–1697

    CAS  Google Scholar 

  160. Young MA, Tunstall MJ, Kistler J et al (2000) Blocking chloride channels in the rat lens: localized changes in tissue hydration support the existence of a circulating chloride flux. Invest Ophthalmol Visual Sci 41:3049–3055

    CAS  Google Scholar 

  161. Cossette P, Liu L, Brisebois K et al (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31:184–189

    CAS  Google Scholar 

  162. Harkin LA, Bowser DN, Dibbens LM et al (2002) Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 70:530–536

    CAS  Google Scholar 

  163. Lappalainen J, Krupitsky E, Remizov M et al (2005) Association between alcoholism and gamma-amino butyric acid alpha2 receptor subtype in a Russian population, Alcohol. Clin Exp Res 29:493–498

    CAS  Google Scholar 

  164. Edenberg HJ, Dick DM, Xuei X et al (2004) Variations in GABRA2, encoding the alpha2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714

    CAS  Google Scholar 

  165. Buhr A, Bianchi MT, Baur R et al (2002) Functional characterization of the new human GABA(A) receptor mutation beta3(R192H). Hum Genet 111:154–160

    CAS  Google Scholar 

  166. Greger R (1983) Chloride channel blockers. Methods Enzymol 191:793–810

    Google Scholar 

  167. Bretag AH (1987) Muscle chloride channels. Physiol Rev 67:618–724

    CAS  Google Scholar 

  168. Miller C, White MM (1984) Dimeric structure of single chloride channels from Torpedo Electroplax. Proct Natl Acad Sci USA 81:2772–2775

    CAS  Google Scholar 

  169. Cai Z, Scott-Ward TS, Li H et al (2004) Strategies to investigate the mechanism of action of CFTR modulators. J Cyst Fibros 3:141–147

    CAS  Google Scholar 

  170. Linsdell P (2006) Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91:123–129

    CAS  Google Scholar 

  171. McDonough S, Davidson N, Lester HA et al (1994) Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13:623–634

    CAS  Google Scholar 

  172. Linsdell P, Hanrahan JW (1996) Flickery block of single CFTR chloride channels by intracellular anions and osmolytes. Am J Physiol Cell Physiol 271:C628–C634

    CAS  Google Scholar 

  173. Sheppard DN, Robinson KA (1997) Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a murine cell line. J Physiol (Lond) 503:333–346

    CAS  Google Scholar 

  174. Linsdell P (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280:8945–8950

    CAS  Google Scholar 

  175. Linsdell P (2000) Inhibition of cystic fibrosis transmembrane conductance regulator chloride channel currents by arachidonic acid. Can J Physiol Pharm 78:490–499

    CAS  Google Scholar 

  176. Zhou JJ, Linsdell P (2007) Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel. Eur J Pharmacol 563:88–91

    CAS  Google Scholar 

  177. St. Aubin CN, Linsdell P (2006) Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel. J Gen Physiol 128:535–545

    CAS  Google Scholar 

  178. Ishihara H, Welsh MJ (1997) Block by MOPS reveals a conformation change in the CFTR pore produced by ATP hydrolysis. Am J Physiol Cell Physiol 273:C1278–C1289

    CAS  Google Scholar 

  179. Yamamoto D, Suzuki N (1987) Blockage of chloride channels by HEPES buffer. Proc R Soc Lond B Bio Sci 23:93–100

    Google Scholar 

  180. Kürz L, Wagner S, George AL et al (1997) Probing the major skeletal muscle chloride channel with Zn2+ and other sulfhydryl-reactive compounds. Pflügers Arch 433:357–363

    Google Scholar 

  181. Kürz LL, Klink H, Jacob I et al (1999) Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel. J Biol Chem 274:11687–11692

    Google Scholar 

  182. Horenstein J, Akabas MH (1998) Location of a high affinity Zn2+ binding site in the channel of alpha1beta1 gamma-aminobutyric acid A receptors. Mol Pharmacol 53:870–877

    CAS  Google Scholar 

  183. Wooltorton JR, McDonald BJ, Moss SJ et al (1997) Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of beta subunits. J Physiol (Lond) 505:633–640

    CAS  Google Scholar 

  184. Blaisdell CJ, Edmonds RD, Wang XT et al (2000) pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol 278:L1248–L1255

    CAS  Google Scholar 

  185. Chesnoy-Marchais D, Fritsch J (1994) Activation of hyperpolarization and atypical osmosensitivity of a Cl current in rat osteoblastic cells. J Membr Biol 140:173–188

    CAS  Google Scholar 

  186. Clark S, Jordt SE, Jentsch TJ et al (1998) Characterization of the hyperpolarization- activated chloride current in dissociated rat sympathetic neurons. J Physiol (Lond) 506:665–678

    CAS  Google Scholar 

  187. White MM, Aylwin M (1990) Niflumic and flufenamic acids are potent reversible blockers of Ca2+-activated Cl channels in Xenopus oocytes. Mol Pharmacol 37:720–724

    CAS  Google Scholar 

  188. Tulk BM, Edwards JC (1998) Ncc27, a homolog of intracellular Cl channel p64, is expressed in brush border of renal proximal tubule. Am J Physiol Renal Physiol 274:F1140–F1149

    CAS  Google Scholar 

  189. Geck P, Pietrzyk C, Burckhardt BC et al (1980) Electrically silent cotransport of Na+, K+ and Cl in ehrlich cells. Biochim Biophys Acta 600:432–447

    CAS  Google Scholar 

  190. Ellory JC, Dunham PB, Logue PJ et al (1982) Anion dependent cation transport in erythrocytes. Philos Trans R Soc Lond B Biol Sci 299:483–495

    CAS  Google Scholar 

  191. Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 65:760–797

    CAS  Google Scholar 

  192. Passow H (1986) Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol 103:61–203

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, S.P., Kaur, P.K. (2011). Chloride Ion Channels: Structure, Functions, and Blockers. In: Gupta, S. (eds) Ion Channels and Their Inhibitors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19922-6_11

Download citation

Publish with us

Policies and ethics