Advertisement

Effective Parallelization of Non-bonded Interactions Kernel for Virtual Screening on GPUs

  • Ginés D. Guerrero
  • Horacio Pérez-Sánchez
  • Wolfgang Wenzel
  • José M. Cecilia
  • José M. García
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 93)

Abstract

In this work we discuss the benefits of using massively parallel architectures for the optimization of Virtual Screeningmethods.We empirically demonstrate that GPUs are well suited architecture for the acceleration of non-bonded interaction kernels, obtaining up to a 260 times sustained speedup compared to its sequential counterpart version.

Keywords

Graphic Processing Unit Virtual Screening Thread Block Cell Processor Streaming Multiprocessor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harvey, M.J., De Fabritiis, G.: An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware. J. Chem. Theory. Comput. 5, 2371–2377 (2009)CrossRefGoogle Scholar
  2. 2.
    Kokh, D., Wenzel, W.: Flexible side chain models improve enrichment rates in in silico screening. J. Med. Chem. 51, 5919–5931 (2008)CrossRefGoogle Scholar
  3. 3.
    NVIDIA. CUDA Programming Guide 3.2 (2010)Google Scholar
  4. 4.
    Pérez-Sánchez, H.E., Wenzel, W.: Implementation of an effective non-bonded interactions kernel for biomolecular simulations on the cell processor. In: Gesellschaft fuer Informatik, Jahrestagung 2009. LNI, vol. 154, pp. 721–729 (2009)Google Scholar
  5. 5.
    Pérez-Sánchez, H.E., Wenzel, W.: Optimization methods for virtual screening on novel computational architectures. Curr. Comput. Aided. Drug. Des. 7, 1–17 (2011)CrossRefGoogle Scholar
  6. 6.
    Pham, D., Aipperspach, T., Boerstler, D., Bolliger, M., Chaudhry, R., Cox, D., Harvey, P., Hofstee, H., Johns, C.: Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor. IEEE J. Solid-State Circuits 41, 179–196 (2006)CrossRefGoogle Scholar
  7. 7.
    Schiller, A., Sutmann, G., Yang, L.: A Fast Wavelet Based Implementation to Calculate Coulomb Potentials on the Cell/B.E. In: Proceedings of the 2008 10th IEEE ICHPCC, pp. 162–168. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  8. 8.
    Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schulten, K.: Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28, 2618–2640 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ginés D. Guerrero
    • 1
  • Horacio Pérez-Sánchez
    • 2
  • Wolfgang Wenzel
    • 2
  • José M. Cecilia
    • 1
  • José M. García
    • 1
  1. 1.Grupo de Arquitectura y Computación Paralela, Dpto. de Ing. y Tecnología de Computadores Facultad de InformáticaUniversidad de MurciaMurciaSpain
  2. 2.Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations