Advertisement

Interpreting the Regulatory Interplay in E. coli Metabolic Pathways

  • Anália Lourenço
  • Sónia Carneiro
  • José P. Pinto
  • Miguel Rocha
  • Eugénio C. Ferreira
  • Isabel Rocha
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 93)

Abstract

Many regulatory processes in the cell are based on the control of gene expression through the interaction of transcription factors. However, enzymatic regulation often overlays transcriptional regulation and even, in some metabolic pathways, enzymatic regulation prevails. The present study addresses the regulatory network of Escherichia coli and offers a global view of the regulation of its metabolic pathways. It identifies the regulatory mechanisms responsible for key metabolic activities and details the structures behind such mechanisms. This knowledge is considered of relevance to further studies on the bacteria’s system and its industrial application, namely for understanding the signal cascades comprised in the responses to various environmental stresses.

Keywords

Citric Acid Cycle Network Motif Transcriptional Regulation Network Motif Type Glutamate Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thiele, I., Jamshidi, N., Fleming, R.M., Palsson, B.O.: Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol. 5, e1000312 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abdul Kadir, T.A., Mannan, A.A., Kierzek, A.M., McFadden, J., Shimizu, K.: Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb. Cell Fact. 9, 88 (2010)CrossRefGoogle Scholar
  3. 3.
    Feist, A.M., Palsson, B.O.: The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659–667 (2008)CrossRefGoogle Scholar
  4. 4.
    Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D., Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.O.: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007)CrossRefGoogle Scholar
  5. 5.
    Keseler, I.M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A.G., Mackie, A., Paulsen, I., Gunsalus, R.P., Karp, P.D.: EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res. (2010)Google Scholar
  6. 6.
    Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRefGoogle Scholar
  7. 7.
    Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)CrossRefGoogle Scholar
  8. 8.
    Hu, P., Janga, S.C., Babu, M., Diaz-Mejia, J.J., Butland, G., Yang, W., Pogoutse, O., Guo, X., Phanse, S., Wong, P., Chandran, S., Christopoulos, C., Nazarians-Armavil, A., Nasseri, N.K., Musso, G., Ali, M., Nazemof, N., Eroukova, V., Golshani, A., Paccanaro, A., Greenblatt, J.F., Moreno-Hagelsieb, G., Emili, A.: Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 7, e96 (2009)Google Scholar
  9. 9.
    Ma, H.W., Zhao, X.M., Yuan, Y.J., Zeng, A.P.: Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics 20, 1870–1876 (2004)CrossRefGoogle Scholar
  10. 10.
    Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRefGoogle Scholar
  11. 11.
    Shalel-Levanon, S., San, K.Y., Bennett, G.N.: Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab. Eng. 7, 364–374 (2005)CrossRefGoogle Scholar
  12. 12.
    Brondijk, T.H., Nilavongse, A., Filenko, N., Richardson, D.J., Cole, J.A.: NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochem. J. 379, 47–55 (2004)CrossRefGoogle Scholar
  13. 13.
    van Wonderen, J.H., Burlat, B., Richardson, D.J., Cheesman, M.R., Butt, J.N.: The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J. Biol. Chem. 283, 9587–9594 (2008)CrossRefGoogle Scholar
  14. 14.
    Castanie-Cornet, M.P., Cam, K., Bastiat, B., Cros, A., Bordes, P., Gutierrez, C.: Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res. 38, 3546–3554 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anália Lourenço
    • 1
  • Sónia Carneiro
    • 1
  • José P. Pinto
    • 2
  • Miguel Rocha
    • 2
  • Eugénio C. Ferreira
    • 1
  • Isabel Rocha
    • 1
  1. 1.Centre of Biological EngineeringIBB - Institute for Biotechnology and BioengineeringPortugal
  2. 2.Department of Informatics / CCTCUniversity of MinhoBragaPortugal

Personalised recommendations