Advertisement

Relating Formalisms for the Qualitative Modelling of Regulatory Networks

  • Beatriz Luna
  • Claudine Chaouiya
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 93)

Abstract

Different mathematical frameworks are used to model and analyse regulatory networks. Here, we focus on qualitative formalisms: logical framework, discrete time piecewise affine equations and piecewise affine differential equations.We present the relationships between these formalisms and compare the dynamics of logical and discrete time piecewise affine models of elementary regulatory circuits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahi, J.M., Contassot-Vivier, S.: Stability of fully asynchronous discrete-time discrete-state dynamic networks. IEEE Trans. Neural Netw. 13(6), 1353–1363 (2002)CrossRefGoogle Scholar
  2. 2.
    Chaves, M., Tournier, L., Gouzé, J.L.: Comparing boolean and piecewise affine differential modes for genetic networks. Acta Biother 58, 217–232 (2010)CrossRefGoogle Scholar
  3. 3.
    Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A.: Discrete–time piecewise affine models of genetic regulatory networks. J. Math. Biol. 52, 524–570 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Glass, L., Kauffman, S.: The logical analysis of continuous, nonlinear biochemical control networks. J. Theor. Biol. 44, 167–190 (1974)CrossRefGoogle Scholar
  5. 5.
    Gouzé, J.L.: Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15 (1998)zbMATHCrossRefGoogle Scholar
  6. 6.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9, 69–105 (2002)Google Scholar
  7. 7.
    Polynikis, A., Hogan, S., di Bernardo, M.: Comparing different ODE modelling approaches for gene regulatory networks. J. Theor. Biol. 261, 511–530 (2009)CrossRefGoogle Scholar
  8. 8.
    Remy, E., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics 19, 172–178 (2003)CrossRefGoogle Scholar
  9. 9.
    Remy, E., Ruet, P.: From minimal signed circuits to the dynamics of boolean regulatory networks. Bioinformatics 24, 220–226 (2008)CrossRefGoogle Scholar
  10. 10.
    Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative simulation of the carbon starvation response in escherichia coli. Biosystems 84, 124–152 (2006)CrossRefGoogle Scholar
  11. 11.
    Snoussi, E.: Qualitative dynamis of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4, 189–207 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Soliman, S., Chaouiya, C., Batt, G., Fages, F., Remy, E., Pommereau, F., Calzone, L.: Modelling molecular networks: relationships between different formalisms and levels of details. Research Report RR-7221, INRIA (2010)Google Scholar
  13. 13.
    Thieffry, D.: Dynamical roles of biological regulatory circuits. Brief Bioinform. 8(4), 220–225 (2007)CrossRefGoogle Scholar
  14. 14.
    Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks, ii. immunity control in bacteriophage lambda. Bul. Math. Biol. 57(2), 277–297 (1995)zbMATHGoogle Scholar
  15. 15.
    Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973)CrossRefGoogle Scholar
  16. 16.
    Thomas, R., D’Ari, R.: Biological Feedback. CRC Press, Inc., Boca Raton (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Beatriz Luna
    • 1
  • Claudine Chaouiya
    • 1
  1. 1.IGCOeirasPortugal

Personalised recommendations