Advertisement

Integrative Analysis of the Regulatory Region of the FGFR3 Oncogene

  • Josep Bau
  • Marta Cullell
  • Jordi Solé-Casals
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 93)

Abstract

The study of transcriptional regulation often needs the integration of diverse yet independent data. In the present work, sequence conservation, prediction of transcription factor binding sites (TFBS) and gene expression analysis have been applied to the detection of putative transcription factor (TF) modules in the regulatory region of the FGFR3 oncogene. Several TFs with conserved binding sites in the FGFR3 regulatory region have shown high positive or negative correlation with FGFR3 expression both in urothelial carcinoma and in benign nevi. By means of conserved TF cluster analysis, two different TF modules have been identified in the promoter and first intron of FGFR3 gene. These modules contain activating AP2, E2F, E47 and SP1 binding sites plus motifs for EGR with possible repressor function.

Keywords

FGFR3 Bladder Cancer Transcription Factors Binding Sites Conserved Sequence Gene Expression Regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perez-Castro, A.V., Wilson, J., Altherr, M.R.: Genomic organization of the human fibroblast growth factor receptor 3 (FGFR3) gene and comparative sequence analysis with the mouse Fgfr3 gene. Genomics 41, 10–16 (1997)CrossRefGoogle Scholar
  2. 2.
    Tan, C.C., Walsh, M.J., Gelb, B.D.: Fgfr3 is a transcriptional target of Ap2δ and Ash2l-containing histone methyltransferase complexes. PLoS One 4, e8535 (2009)Google Scholar
  3. 3.
    Funato, N., Ohtani, K., Ohyama, K., Kuroda, T., Nakamura, M.: Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol. Cell Biol. 21: 7416-7428 (2001)Google Scholar
  4. 4.
    Ovcharenko, I., Nobrega, M.A.: Identifying synonymous regulatory elements in vertebrate genomes. Nucleic Acids Res. 33, 184–194 (2005)CrossRefGoogle Scholar
  5. 5.
    Ovcharenko, I., Loots, G.G., Giardine, B.M., Hou, M., Ma, J., Hardison, R.C., Stubbs, L., Miller, W.: Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res. 15, 184–194 (2005)CrossRefGoogle Scholar
  6. 6.
    Jamshidi-Parsian, A., Dong, Y., Zheng, X., Zhou, H.S., Zacharias, W., McMasters, K.M.: Gene expression profiling of E2F-1-induced apoptosis. Gene 344, 67–77 (2005)CrossRefGoogle Scholar
  7. 7.
    Müller, H., Bracken, A.P., Vernell, R., Moroni, M.C., Christians, F., Grassilli, E., Prosperini, E., Vigo, E., Oliner, J.D., Helin, K.: E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15 267, 267–285 (2001)CrossRefGoogle Scholar
  8. 8.
    Tan, L., Peng, H., Osaki, M., Choy, B.K., Auron, P.E., Sandell, L.J., Goldring, M.B.: Egr-1 Mediates Transcriptional Repression of COL2A1Promoter Activity by Interleukin-1β. J. Biol. Chem. 278, 17688–17700 (2003)CrossRefGoogle Scholar
  9. 9.
    Delbridge, G.J., Khachigian, L.M.: FGF-1–Induced Platelet-Derived Growth Factor-A Chain Gene Expression in Endothelial Cells Involves Transcriptional Activation by Early Growth Response Factor-1. Circ. Res. 81, 282–288 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Josep Bau
    • 1
  • Marta Cullell
    • 1
  • Jordi Solé-Casals
    • 2
  1. 1.Bioinformatics and Medical Statistics Group, Department of Systems BiologyUniversitat de VicSpain
  2. 2.Digital Technologies Group, Department of Digital Technologies and InformationUniversitat de VicSpain

Personalised recommendations