A Parallel Niched Pareto Evolutionary Algorithm for Multiple Sequence Alignment

  • Fernando José Mateus da Silva
  • Juan Manuel Sánchez Pérez
  • Juan Antonio Gómez Pulido
  • Miguel A. Vega Rodríguez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 93)


Multiple sequence alignment is one of the most common tasks in Bioinformatics. However, there are not biologically accurate methods for performing sequence alignment. Genetic Algorithms are adaptive search methods which perform well in large and complex spaces, such as the ones present when aligning a set of sequences. Parallel Genetic Algorithms, not only increase the speed up of the search, but also improve its efficiency, presenting results that are better than those provided by the sum of several sequential Genetic Algorithms. Although these methods are often used to optimize a single objective, they can also be used in multidimensional domains, finding all possible tradeoffs among multiple conflicting objectives. Parallel AlineaGA is an evolutionary algorithm which makes use of a Parallel Genetic Algorithm for performing multiple sequence alignment. We present a multiple objective approach of Parallel AlineaGA that uses a Parallel Niched Pareto Genetic Algorithm. We compare the performance of both versions using eight BAliBASE datasets. We also measure up the quality of the obtained solutions with the ones achieved by T-Coffee and ClustalW2, allowing us to observe that our algorithm reaches for better solutions in the majority of the datasets.


Genetic Algorithm Multiple Sequence Alignment Pareto Front Message Passing Interface Parallel Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pal, S.K., Bandyopadhyay, S., et al.: Evolutionary computation in bioinformatics: A review. IEEE Transactions on Systems Man and Cybernetics Part C-Appl. and Rev. 36(5), 601–615 (2006)CrossRefGoogle Scholar
  2. 2.
    Notredame, C.: Recent evolutions of multiple sequence alignment algorithms. PLoS Comput. Biol. 3(8), e123 (2007)CrossRefGoogle Scholar
  3. 3.
    De Jong, K.: Learning with genetic algorithms: An overview. Mach. Learning 3(2-3), 121–138 (1988)CrossRefGoogle Scholar
  4. 4.
    Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Complexity 4(4), 31–52 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)Google Scholar
  6. 6.
    Shir, O.M., Back, T.: Niche radius adaptation in the CMA-ES niching algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 142–151. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Silva, F.J.M., Sánchez Pérez, J.M., et al.: Parallel AlineaGA: An Island Parallel Evolutionary Algorithm for Multiple Sequence Alignment. In: SoCPaR 2010 - International Conference on Soft Computing and Pattern Recognition, Cergy Pontoise, Paris, France, pp. 279–284. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar
  8. 8.
    Gropp, W., Lusk, E., et al.: Using MPI: portable parallel programming with the message passing interface (1999)Google Scholar
  9. 9.
    Horn, J., Nafpliotis, N., et al.: A niched Pareto genetic algorithm for multiobjective optimization. In: First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 82–87 (1994)Google Scholar
  10. 10.
    Thompson, J.D., Plewniak, F., et al.: BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs. Comput. Appl. Biosci. 15(1), 87–88 (1999)Google Scholar
  11. 11.
    Larkin, M.A., Blackshields, G., et al.: Clustal W and Clustal X version 2.0. Comput. Appl. Biosci. 23(21), 29–47 (2007)Google Scholar
  12. 12.
    Notredame, C., Higgins, D.G., et al.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302(1), 205–217 (2000)CrossRefGoogle Scholar
  13. 13.
    Lassmann, T., Sonnhammer, E.L.L.: Quality assessment of multiple alignment programs. FEBS Letters 529(1), 126–130 (2002)CrossRefGoogle Scholar
  14. 14.
    Gregor, D., Lumsdaine: A Design and implementation of a high-performance MPI for C# and the common language infrastructure. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, Salt Lake City, USA, pp. 133–142. ACM, New York (2008)CrossRefGoogle Scholar
  15. 15.
    Dayhoff, M.O., Schwartz, R.M., et al.: A Model of Evolutionary Change in Proteins. In: Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, vol. 5, pp. 345–352 (1978)Google Scholar
  16. 16.
    Silva, F.M., Sánchez Pérez, J.M., et al.: AlineaGA - A Genetic Algorithm with Local Search Optimization for Multiple Sequence Alignment. Applied Intelligence, 1–9 (2009)Google Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)zbMATHGoogle Scholar
  18. 18.
    Chellapilla, K., Fogel, G.B.: Multiple sequence alignment using evolutionary programming. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, USA, pp. 445–452. IEEE Press, Los Alamitos (1999)Google Scholar
  19. 19.
    Silva, F.J.M., Sánchez Pérez, J.M., et al.: An Evolutionary Approach for Performing Multiple Sequence Alignment. In: WCCI 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain, July 18-23, pp. 992–998 (2010)Google Scholar
  20. 20.
    Silva, F.J.M., Sánchez Pérez, J.M., et al.: A Niched Pareto Genetic Algorithm for Multiple Sequence Alignment Optimization. In: Filipe, J., Fred, A.L.N., Sharp, B. (eds.) International Conference on Agents and Artificial Intelligence, Valencia, Spain, January 22-24, pp. 323–329. INSTICC Press (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fernando José Mateus da Silva
    • 1
  • Juan Manuel Sánchez Pérez
    • 2
  • Juan Antonio Gómez Pulido
    • 2
  • Miguel A. Vega Rodríguez
    • 2
  1. 1.School of Technology and Management, Computer Science and Communication Research CentrePolytechnic Institute of LeiriaLeiriaPortugal
  2. 2.Dept. Tecnologías Computadores y Comunicaciones, Escuela PolitécnicaUniversidad de ExtremaduraCáceresSpain

Personalised recommendations