MOGA-Based Multi-drug Optimisation for Cancer Chemotherapy

  • S. Algoul
  • M. S. Alam
  • K. Sakib
  • M. A. Hossain
  • M. A. A. Majumder
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 93)


This paper presents a novel method of multi-drug scheduling using multi-objective genetic algorithm (MOGA) that can find suitable/optimum dosages by trading-off between cell killing and toxic side-effects of chemotherapy treatment. A close-loop control method, namely Integral-Proportional-Derivative (I-PD) is designed to control dosages of drugs to be infused to the patient’s body and MOGA is used to find suitable parameters of the controller. A cell compartments model is developed and used to describe the effects of the drugs on different type of cells, plasma drug concentration and toxic side-effects. Results show that specific drug schedule obtained through the proposed method can reduce the tumour size nearly 100% with relatively lower toxic side-effects.


Chemotherapy Drug Drug Schedule Stochastic Universal Sampling Evolutionary Computing Approach Desire Drug Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tes, S., Leung, Y., Lee, K., Mok, T.: A Memetic Algorithm for Multiple-Drug Cancer Chemo therapy Scheduling Optimization. IEEE Trans. on Systems, Cybernetics-part B 37, 84–91 (2007)CrossRefGoogle Scholar
  2. 2.
    Martin, R., Teo, K.: Optimal control of drug administration in chemotherapy tumour growth, pp. 95–111. World Scientific, Singapore (1994)Google Scholar
  3. 3.
    Panetta, J., Adam, J.: A Mathematical Model of Cycle-Specific Chemotherapy. Math. Computing Modelling 22(2), 67–82 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Algoul, S., Hossain, M., Majumder, A.: Optimization and scheduling for chemotherapy treatment to control tumour growth. In: 25th SBEC, pp. 371–376. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Algoul, S., Alam, S., Hossain, M., Majumder, A.: Multi-objective optimal chemotherapy control model for cancer treatment. Springer Journal on Medical and Engineering and Computing, Ref: MBEC2135R3 (2010),
  6. 6.
    Algoul, S., Alam, S., Hossain, M., Majumder, A.: Feedback control of chemotherapy drug scheduling for phase specific cancer treatment. In: IEEE Fifth International Conference on BioInspired Computing: Theories and Applications (BIC-TA), pp. 1443–1450 (2010)Google Scholar
  7. 7.
    Martin, R.: Optimal control drug scheduling of cancer chemotherapy. Automatica, 1113–1122 (1992)Google Scholar
  8. 8.
    The Mathworks, I.: MATLAB Reference Guide (2010a)Google Scholar
  9. 9.
    Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic algorithms toolbox user’s guide. In: Autmatic Control and Systems Engineering, The University of Sheffield, UK (1994)Google Scholar
  10. 10.
    Ochoa, Burke, E.: An evolutionary approach to cancer chemotherapy scheduling. Springer Science 8, 301–318 (2007)Google Scholar
  11. 11.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, New York (2001)zbMATHGoogle Scholar
  12. 12.
    Chipperfield, A., Purshouse, R., Fleming, P., Thompson, H., Griffin, I.: Multi-objective optimisation in control system design: an evolutionary computing approach. In: IFAC World Congress (2002)Google Scholar
  13. 13.
    Algoul, S., Alam, S., Hossain, A., Majumder, A.: Multi-Objective Optimisation for Multi-Drug Chemotherapy Scheduling. In: The 13th International Conference on Computer and Information Technology (ICCIT 2010), Dhaka, Bangladesh (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. Algoul
    • 1
  • M. S. Alam
    • 2
  • K. Sakib
    • 1
  • M. A. Hossain
    • 3
  • M. A. A. Majumder
    • 1
  1. 1.University of BradfordBradfordUK
  2. 2.University of DhakaBangladesh
  3. 3.Northumbria UniversityUK

Personalised recommendations