Skip to main content

Computing Hypervolume Contributions in Low Dimensions: Asymptotically Optimal Algorithm and Complexity Results

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6576))

Included in the following conference series:

Abstract

Given a finite set Y ⊂ ℝd of n mutually non-dominated vectors in d ≥ 2 dimensions, the hypervolume contribution of a point y ∈ Y is the difference between the hypervolume indicator of Y and the hypervolume indicator of Y ∖ {y}. In multi-objective metaheuristics, hypervolume contributions are computed in several selection and bounded-size archiving procedures.

This paper presents new results on the (time) complexity of computing all hypervolume contributions. It is proved that for d = 2,3 the problem has time complexity Θ(n logn), and, for d > 3, the time complexity is bounded below by Ω(n logn). Moreover, complexity bounds are derived for computing a single hypervolume contribution.

A dimension sweep algorithm with time complexity \(\mathcal{O}\)(n logn) and space complexity \(\mathcal{O}(n)\) is proposed for computing all hypervolume contributions in three dimensions. It improves the complexity of the best known algorithm for d = 3 by a factor of \(\sqrt{n}\). Theoretical results are complemented by performance tests on randomly generated test-problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adelson-Velskij, G., Landis, E.: An algorithm for the organization of information. Doklady Akad. Nauk SSSR 146, 263–266 (1962)

    MathSciNet  Google Scholar 

  2. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation (2010) (in press)

    Google Scholar 

  3. Beume, N.: S-metric calculation by considering dominated hypervolume as Klee’s measure problem. Evolutionary Computation 17(4), 477–492 (2009)

    Article  Google Scholar 

  4. Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Transact. Evolutionary Computation 13(5), 1075–1082 (2009)

    Article  Google Scholar 

  5. Bradstreet, L., Barone, L., While, L.: Updating exclusive hypervolume contributions cheaply. In: Conf. on Evolutionary Computation, pp. 538–544. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  6. Bradstreet, L., While, L., Barone, L.: A fast incremental hypervolume algorithm. IEEE Transact. on Evolutionary Computation 12(6), 714–723 (2008)

    Article  Google Scholar 

  7. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high-dimensional geometric objects. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 436–447. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 6–20. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Bringmann, K., Friedrich, T.: An efficient algorithm for computing hypervolume contributions. Evolutionary Computation 18(3), 383–402 (2010)

    Article  Google Scholar 

  10. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Fleischer, M.: The measure of pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Conf. on Evolutionary Computation, pp. 1157–1163. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  13. Huband, S., Hingston, P., While, L., Barone, L.: An evolution strategy with probabilistic mutation for multi-objective optimisation. In: Conf. on Evolutionary Computation, vol. 4, pp. 2284–2291. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  14. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15(1), 1–28 (2007)

    Article  Google Scholar 

  15. Ishibuchi, H., Tsukamoto, N., Sakane, Y., Nojima, Y.: Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. In: GECCO 2010, pp. 527–534. ACM, USA (2010)

    Google Scholar 

  16. Knowles, J., Corne, D., Fleischer, M.: Bounded archiving using the Lebesgue measure. In: Conf. on Evolutionary Computation, pp. 2490–2497. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  17. Knuth, D.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1998)

    MATH  Google Scholar 

  18. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimization on computer grids. In: GECCO 2007, pp. 869–875. ACM, New York (2007)

    Google Scholar 

  20. Naujoks, B., Beume, N., Emmerich, M.: Multi-objective optimisation using S-metric selection: Application to three-dimensional solution spaces, vol. 2 (2005)

    Google Scholar 

  21. Overmars, M.H., Yap, C.K.: New upper bounds in klee’s measure problem. SIAM J. Comput. 20(6), 1034–1045 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  23. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Transact. Evolutionary Computation 10(1), 29–38 (2006)

    Article  Google Scholar 

  24. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, ETH Zurich, Switzerland (1999)

    Google Scholar 

  25. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  27. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transact. on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emmerich, M.T.M., Fonseca, C.M. (2011). Computing Hypervolume Contributions in Low Dimensions: Asymptotically Optimal Algorithm and Complexity Results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics