Abstract
Relaxed forms of Pareto dominance have been shown to be the most effective way in which evolutionary algorithms can progress towards the Pareto-optimal front with a widely spread distribution of solutions. A popular concept is the ε-dominance technique, which has been employed as an archive update strategy in some multiobjective evolutionary algorithms. In spite of the great usefulness of the ε-dominance concept, there are still difficulties in computing an appropriate value of ε that provides the desirable number of nondominated points. Additionally, several viable solutions may be lost depending on the hypergrid adopted, impacting the convergence and the diversity of the estimate set. We propose the concept of cone ε-dominance, which is a variant of the ε-dominance, to overcome these limitations. Cone ε-dominance maintains the good convergence properties of ε-dominance, provides a better control over the resolution of the estimated Pareto front, and also performs a better spread of solutions along the front. Experimental validation of the proposed cone ε-dominance shows a significant improvement in the diversity of solutions over both the regular Pareto-dominance and the ε-dominance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strengh Pareto Evolutionary Algorithm. Tech. report 103, Computer Engineering and Networks Laboratory (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. Evol. Comp. 3(4), 257–271 (1999)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization. Evolutionary Computation 10(3), 263–282 (2002)
Hernández-Díaz, A.G., et al.: Pareto-Adaptive ε-Dominance. Evolutionary Computation 15(4), 493–517 (2007)
Miettinen, K.M.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science. Springer, Heidelberg (1998)
Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. In: Fonseca, C.M., et al. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)
Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-Dominance Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolutionary Computation 13(2), 501–525 (2005)
Kanpur Genetic Algorithms Laboratory (KanGAL), http://www.iitk.ac.in/kangal/codes.shtml
Deb, K.: Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation 7(3), 205–230 (1999)
Poloni, C.: Hybrid GA for Multiobjective Aerodynamic Shape Optimization. In: Winter, G., et al. (eds.) Genetic Algorithms in Engineering and Computer Science, pp. 397–416. Wiley, Chichester (1995)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 105–145. Springer, Heidelberg (2005)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizer: An Analysis and Review. IEEE Trans. Evol. Comp. 7(2), 117–132 (2003)
Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 4th edn. Wiley, Chichester (2006)
Hodges, J.L., Lehmann, E.L.: Estimation of location based on ranks. Annals of Mathematical Statistics 34, 598–611 (1963)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A. (2011). Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-19893-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19892-2
Online ISBN: 978-3-642-19893-9
eBook Packages: Computer ScienceComputer Science (R0)