Skip to main content

Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6576))

Included in the following conference series:

Abstract

Relaxed forms of Pareto dominance have been shown to be the most effective way in which evolutionary algorithms can progress towards the Pareto-optimal front with a widely spread distribution of solutions. A popular concept is the ε-dominance technique, which has been employed as an archive update strategy in some multiobjective evolutionary algorithms. In spite of the great usefulness of the ε-dominance concept, there are still difficulties in computing an appropriate value of ε that provides the desirable number of nondominated points. Additionally, several viable solutions may be lost depending on the hypergrid adopted, impacting the convergence and the diversity of the estimate set. We propose the concept of cone ε-dominance, which is a variant of the ε-dominance, to overcome these limitations. Cone ε-dominance maintains the good convergence properties of ε-dominance, provides a better control over the resolution of the estimated Pareto front, and also performs a better spread of solutions along the front. Experimental validation of the proposed cone ε-dominance shows a significant improvement in the diversity of solutions over both the regular Pareto-dominance and the ε-dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strengh Pareto Evolutionary Algorithm. Tech. report 103, Computer Engineering and Networks Laboratory (2001)

    Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. Evol. Comp. 3(4), 257–271 (1999)

    Article  Google Scholar 

  4. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  5. Hernández-Díaz, A.G., et al.: Pareto-Adaptive ε-Dominance. Evolutionary Computation 15(4), 493–517 (2007)

    Article  Google Scholar 

  6. Miettinen, K.M.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  7. Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. In: Fonseca, C.M., et al. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-Dominance Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolutionary Computation 13(2), 501–525 (2005)

    Article  Google Scholar 

  9. Kanpur Genetic Algorithms Laboratory (KanGAL), http://www.iitk.ac.in/kangal/codes.shtml

  10. Deb, K.: Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation 7(3), 205–230 (1999)

    Article  MathSciNet  Google Scholar 

  11. Poloni, C.: Hybrid GA for Multiobjective Aerodynamic Shape Optimization. In: Winter, G., et al. (eds.) Genetic Algorithms in Engineering and Computer Science, pp. 397–416. Wiley, Chichester (1995)

    Google Scholar 

  12. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 105–145. Springer, Heidelberg (2005)

    Google Scholar 

  14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizer: An Analysis and Review. IEEE Trans. Evol. Comp. 7(2), 117–132 (2003)

    Article  Google Scholar 

  15. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 4th edn. Wiley, Chichester (2006)

    MATH  Google Scholar 

  16. Hodges, J.L., Lehmann, E.L.: Estimation of location based on ranks. Annals of Mathematical Statistics 34, 598–611 (1963)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A. (2011). Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics