Abstract
Given a digital curve and a maximum error, we propose an algorithm that computes a simplification of the curve such that the Fréchet distance between the original and the simplified curve is less than the error. The algorithm uses an approximation of the Fréchet distance, but a guarantee over the quality of the simplification is proved. Moreover, even if the theoretical complexity of the algorithm is in \(\mathcal{O}(n\log(n))\), experiments show a linear behaviour in practice.
Keywords
- Geographic Information System
- Negative Shift
- Theoretical Complexity
- Handwritten Document
- Polygonal Curve
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download conference paper PDF
References
Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for line simplification. In: SoCG 2007, pp. 175–183. ACM, New York (2007)
Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-linear time approximation algorithms for curve simplification. Algorithmica 42(3-4), 203–219 (2005)
Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry 5(1), 75–91 (1995)
Buzer, L.: Optimal simplification of polygonal chains for subpixel-accurate rendering. Comput. Geom. Theory Appl. 42(1), 45–59 (2009)
Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 378–387. Springer, Heidelberg (1992)
Driemel, A., Har-Peled, S., Wenk, C.: Approximating the fréchet distance for realistic curves in near linear time. In: SoCG 2010, pp. 365–374. ACM, New York (2010)
Godau, M.: A natural metric for curves—computing the distance for polygonal chains and approximation algorithms. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 127–136. Springer, Heidelberg (1991)
Imai, H., Iri, M.: Polygonal approximations of a curve: formulations and algorithms. In: Computational Morphology, pp. 71–86. Elsevier, Amsterdam (1988)
Lachaud, J.O.: ImaGene, https://gforge.liris.cnrs.fr/projects/imagene/
Pelletier, S.: Computing the Fréchet distance between two polygonal curves, http://www.cim.mcgill.ca/~stephane/cs507/Project.html
Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching online handwritten documents. In: ICDAR 2007: Int. Conference on Document Analysis and Recognition, pp. 461–465. IEEE Computer Society, Los Alamitos (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sivignon, I. (2011). A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds) Discrete Geometry for Computer Imagery. DGCI 2011. Lecture Notes in Computer Science, vol 6607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19867-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-19867-0_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19866-3
Online ISBN: 978-3-642-19867-0
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.iapr.org/