Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

International Conference on Discrete Geometry for Computer Imagery

DGCI 2011: Discrete Geometry for Computer Imagery pp 333–345Cite as

  1. Home
  2. Discrete Geometry for Computer Imagery
  3. Conference paper
A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

  • Isabelle Sivignon17 
  • Conference paper
  • 789 Accesses

  • 2 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6607)

Abstract

Given a digital curve and a maximum error, we propose an algorithm that computes a simplification of the curve such that the Fréchet distance between the original and the simplified curve is less than the error. The algorithm uses an approximation of the Fréchet distance, but a guarantee over the quality of the simplification is proved. Moreover, even if the theoretical complexity of the algorithm is in \(\mathcal{O}(n\log(n))\), experiments show a linear behaviour in practice.

Keywords

  • Geographic Information System
  • Negative Shift
  • Theoretical Complexity
  • Handwritten Document
  • Polygonal Curve

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for line simplification. In: SoCG 2007, pp. 175–183. ACM, New York (2007)

    Google Scholar 

  2. Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-linear time approximation algorithms for curve simplification. Algorithmica 42(3-4), 203–219 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry 5(1), 75–91 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Buzer, L.: Optimal simplification of polygonal chains for subpixel-accurate rendering. Comput. Geom. Theory Appl. 42(1), 45–59 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 378–387. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  6. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the fréchet distance for realistic curves in near linear time. In: SoCG 2010, pp. 365–374. ACM, New York (2010)

    Google Scholar 

  7. Godau, M.: A natural metric for curves—computing the distance for polygonal chains and approximation algorithms. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 127–136. Springer, Heidelberg (1991)

    CrossRef  Google Scholar 

  8. Imai, H., Iri, M.: Polygonal approximations of a curve: formulations and algorithms. In: Computational Morphology, pp. 71–86. Elsevier, Amsterdam (1988)

    Google Scholar 

  9. Lachaud, J.O.: ImaGene, https://gforge.liris.cnrs.fr/projects/imagene/

  10. Pelletier, S.: Computing the Fréchet distance between two polygonal curves, http://www.cim.mcgill.ca/~stephane/cs507/Project.html

  11. Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching online handwritten documents. In: ICDAR 2007: Int. Conference on Document Analysis and Recognition, pp. 461–465. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. gipsa-lab, CNRS, UMR 5216, F-38420, France

    Isabelle Sivignon

Authors
  1. Isabelle Sivignon
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. LORIA, Equipe ADAGIo, Campus Scientifique, BP 239, 54506, Vandœuvre-lès-Nancy Cedex, France

    Isabelle Debled-Rennesson, Eric Domenjoud, Bertrand Kerautret & Philippe Even, ,  & 

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sivignon, I. (2011). A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds) Discrete Geometry for Computer Imagery. DGCI 2011. Lecture Notes in Computer Science, vol 6607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19867-0_28

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-19867-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19866-3

  • Online ISBN: 978-3-642-19867-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 18.206.92.240

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.