Skip to main content

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6607)

Abstract

Given a digital curve and a maximum error, we propose an algorithm that computes a simplification of the curve such that the Fréchet distance between the original and the simplified curve is less than the error. The algorithm uses an approximation of the Fréchet distance, but a guarantee over the quality of the simplification is proved. Moreover, even if the theoretical complexity of the algorithm is in \(\mathcal{O}(n\log(n))\), experiments show a linear behaviour in practice.

Keywords

  • Geographic Information System
  • Negative Shift
  • Theoretical Complexity
  • Handwritten Document
  • Polygonal Curve

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for line simplification. In: SoCG 2007, pp. 175–183. ACM, New York (2007)

    Google Scholar 

  2. Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-linear time approximation algorithms for curve simplification. Algorithmica 42(3-4), 203–219 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry 5(1), 75–91 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Buzer, L.: Optimal simplification of polygonal chains for subpixel-accurate rendering. Comput. Geom. Theory Appl. 42(1), 45–59 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 378–387. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  6. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the fréchet distance for realistic curves in near linear time. In: SoCG 2010, pp. 365–374. ACM, New York (2010)

    Google Scholar 

  7. Godau, M.: A natural metric for curves—computing the distance for polygonal chains and approximation algorithms. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 127–136. Springer, Heidelberg (1991)

    CrossRef  Google Scholar 

  8. Imai, H., Iri, M.: Polygonal approximations of a curve: formulations and algorithms. In: Computational Morphology, pp. 71–86. Elsevier, Amsterdam (1988)

    Google Scholar 

  9. Lachaud, J.O.: ImaGene, https://gforge.liris.cnrs.fr/projects/imagene/

  10. Pelletier, S.: Computing the Fréchet distance between two polygonal curves, http://www.cim.mcgill.ca/~stephane/cs507/Project.html

  11. Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching online handwritten documents. In: ICDAR 2007: Int. Conference on Document Analysis and Recognition, pp. 461–465. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sivignon, I. (2011). A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds) Discrete Geometry for Computer Imagery. DGCI 2011. Lecture Notes in Computer Science, vol 6607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19867-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19867-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19866-3

  • Online ISBN: 978-3-642-19867-0

  • eBook Packages: Computer ScienceComputer Science (R0)