Skip to main content

General Problems of Propagation of Laser Radiation in Gases and Plasma and Physical Processes on the Surface of Condensed Media

  • Chapter
  • First Online:
Physics of Laser Materials Processing

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 146))

  • 3204 Accesses

Abstract

Laser processing of materials is usually performed by focused radiation, many operations requiring very tight focusing. The focal spot size cannot be made as small as one likes due to diffraction of a light beam. The laser beam focusing can be also restricted by nonlinear processes. Because laser radiation used for material processing has high average or peak powers, this radiation can change the optical properties of media in which it propagates. The so-called self-action effects such as radiation self-focusing or self-defocusing appear. In addition, light can be noticeably absorbed in a medium. Technical industrial conditions may require sometimes the transport of light over long distances in air or through condensed media (in the case of special technologies), and these effects can become significant. Plasma often produced during various technological processes can strongly affect the propagation of light, in particular, IR radiation at λ = 10 μm. In this chapter, we consider this question only briefly. The propagation of radiation in the optical discharge plasma will be discussed in detail in Chap. 3. The efficiency of action of light incident on a sample depends on the absorption coefficient of the latter. For example, during laser welding and drilling light propagates in a narrow channel, where it is multiply reflected from walls. The properties of such propagation of light will be also considered in this chapter. Laser radiation can heat, melt, evaporate, and ionize the sample material. During heating in an oxidizing medium, the sample material can be oxidized. During melting of the sample, the motion of the melt can appear due to Marangoni effect and capillary instabilities can develop. If the radiation intensity is sufficient to initiate the evaporation of the target, specific evaporative instabilities can appear. We will briefly discuss all these phenomena in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The wavelength of light in a metal is at the same time the penetration (skin) depth of the field [9].

  2. 2.

    Note that upon heating, a sample, remaining solid before melting, can experience a number of phase transitions; some such phase transitions during laser hardening are considered in Sect. 2.1.

References

  1. M.B. Vinogradova, O.V. Rudenko, A.P. Sukhorukov, Teoriya voln (Theory of Waves) (Nauka, Moscow, 1979)

    MATH  Google Scholar 

  2. D.C. Smith, Proc. IEEE 65, 1679 (1977)

    Article  ADS  Google Scholar 

  3. A.A. Vedenov, Fizika elektrorazryadnykh lazerov (Physics of Electric-discharge Lasers) (Energoizdat, Moscow, 1982)

    Google Scholar 

  4. A.A. Vedenov, O.A. Markin, Zh. Eksper. Teor. Fiz. 76, 1198 (1979)

    ADS  Google Scholar 

  5. B.P. Gerasimov, T.G. Elizarov, A.P. Sukhorukov, Zh. Tekh. Fiz. 53, 1696 (1983)

    Google Scholar 

  6. V.E. Zuev, Rasprostranenie lazernogo izlucheniya v atmosfere (Propagation of Laser Radiation in Atmosphere) (Radio i Svyaz’, Moscow, 1981)

    Google Scholar 

  7. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981; Nauka, Moscow, 1979)

    Google Scholar 

  8. M. Autric, J.P. Dufrense, Acad. Sci. B 288, 237 (1979)

    ADS  Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960; Nauka, Moscow, 1970)

    Google Scholar 

  10. K. Ujihara, J. Appl. Phys. 43, 2376 (1972)

    Article  ADS  Google Scholar 

  11. Y. Arata, H. Maruo, I. Miyamoto, Tool. Eng. 25, 24 (1981)

    Google Scholar 

  12. H. Hugel, F. Dausinger, W. Bloehs, B. Grunenwald, in Laser Processing: Surface Treatment and Field Deposition, ed. by J. Mazumder, O. Conde, R. Villar, W. Stean (Cluwer Academic Publishers, 1996)

    Google Scholar 

  13. I.P. Shkarofaky, RCA Rev. 36, 336 (1975)

    ADS  Google Scholar 

  14. Y. Arata, H. Maruo, I. Miyamoto, Application of Lasers for Material Processing, IIW, Doc. IV-241-71

    Google Scholar 

  15. F.B. Bunkin, N.F. Kirichenko, B.S. Luk’yanchuk, Usp. Fiz. Nauk 138, 45 (1982)

    Article  Google Scholar 

  16. G.G. Gladush, E.B. Levchenko, A.A. Ezhov, et al., All-Union Conference on Laser Applications in Mechanical Engineering Technology, Zvenigorod, 1982 (Nauka, Moscow, 1982), pp. 69–71

    Google Scholar 

  17. A.V. Nesterov, V.G. Niziev, V.P. Yakunin, J. Phys. D Appl. Phys. 32, 2871 (1999)

    Article  ADS  Google Scholar 

  18. R.V. Arutyunyan, V.Yu. Baranov, L.A. Bol’shov, D.D. Malyuta, A.Yu. Sebrant, Vozdeistvie lazernogo izlucheniya na materialy (Interaction of Laser Radiation with Materials) (Nauka, Moscow, 1989)

    Google Scholar 

  19. V.N. Anisimov, R.V. Arutyunyan, A.Yu. Sebrant, Proceedings of the Interindustry Conference on the Interaction of Radiation, Plasma and Electron Fluxes with Matter (Atominform Central Research Institute, Moscow, 1984), pp. 84–85

    Google Scholar 

  20. L.A. Bol’shov, K.A. Krivoruchko, V.P. Reshetin, Preprint ITMO no. 6 (ITMO Akad Nauk BSSR, Minsk, 1985)

    Google Scholar 

  21. A.A. Vainshtein, Teoriya difraktsii i metod faktorizatsii (Theory of Diffraction and Factorization Method) (Sov. Radio, Moscow, 1966)

    Google Scholar 

  22. V.N. Anisimov, L.A. Bol’shov, K.A. Krivorucko, Kvantovaya Elektron. 14, 177 (1987)

    Google Scholar 

  23. J.R.A. Pearson, J. Fluid Mech.,vol.p. 489-500 (1958).

    Google Scholar 

  24. E.B. Levchenko, A.L. Chernyakov, Zh. Eksper. Teor. Fiz. 81, 202 (1981)

    Google Scholar 

  25. L.E. Scriven, C.V. Sternling, Nature 187, 186 (1960)

    Article  ADS  Google Scholar 

  26. V.G. Levich, Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics) (Fizmatgiz, Moscow, 1959)

    Google Scholar 

  27. N.O. Young, J.S. Goldstain, M.J. Block, J. Fluid. Mech. 6, 350 (1959)

    Article  ADS  Google Scholar 

  28. L.D. Landau, E.M. Lifshits, Mekhanika sploshnykh sred (Mechanics of Continuous Media) (Gostekhizdat, Moscow, 1953)

    Google Scholar 

  29. N.N. Rykalin, A.A. Uglov, A.N. Kokora, Fiz. Khim. Obr. Metal. 6, 14 (1972)

    Google Scholar 

  30. S.I. Anisimov, Ya.A. Imas, G.S. Romanov, et al., Deistvie izlucheniya bol’shoi moshchnosti na metally (Interaction of High-Power Radiation with Metals) (Nauka, Moscow, 1970)

    Google Scholar 

  31. G. Weyl, A. Pirri, R. Root, AIAA J. 19, 460 (1981)

    Article  ADS  Google Scholar 

  32. A.N. Barchukov, F.V. Bunkin, V.I. Konoiv, et al., Zh. Eksp. Teor. Fiz. 66, 965 (1974)

    Google Scholar 

  33. A. Pirri, AIAA J. 15, 83 (1977)

    Article  ADS  Google Scholar 

  34. G.N. Abramovich, Teoriya turbulentnykh strui (Theory of Turbulent Jets) (Fizmatgiz, Moscow, 1960)

    Google Scholar 

  35. V.A. Batanov, F.B. Bunkin, A.M. Prokhorov, et al., Zh. Eksp. Teor. Fiz. 63, 1240 (1972)

    Google Scholar 

  36. Y. Sone, H. Sugimoto, in Strong Evaporation from a Plane Condensed Phase in Adiabatic Waves in Liquid-Vapor Systems, ed. by G.E.A. Meier, P.A. Thompson (Springer, Berlin, 1990), pp. 293–304

    Chapter  Google Scholar 

  37. I.N. Ivchenko, S.K. Loyalka, R.V. Tompson, Jr., Analitical Methods for Problems of Molecular Transport (Springer, 2007)

    Google Scholar 

  38. C.J. Knight, AIAA J. 17, 519 (1979)

    Article  ADS  Google Scholar 

  39. V.I. Mazhukin, P.A. Prudkovskii, A.A. Samokhin, Mathem. Model. 5, 3 (1993)

    Google Scholar 

  40. A.V. Gusarov, I. Smurov, Phys. Fluids. 14, 4242 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. I. Smurov, A. Lashin. Proc. of NATO Fdvance Study Institute on Laser Appl. for Mechanical Indastry,, Erice, Tranpani, Italy, 4–16 Aprile 1992, pp.165–206

    Google Scholar 

  42. A.V. Gusarov, I. Smurov, Appl. Surf. Sci. 168, 96 (2000)

    Article  ADS  Google Scholar 

  43. P.L. Bhatnagar, E.P. Gros, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  Google Scholar 

  44. J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland Pub. Comp., Amsterdam, 1972)

    Google Scholar 

  45. J.W. Elan, D.N. Levy, J. Appl. Phys. 88, 4352 (2000)

    Article  Google Scholar 

  46. M.N. Kogan, N.K. Makashev, Fluid Dyn. 6, 913 (1971)

    Article  ADS  Google Scholar 

  47. A.A. Samokhin, Trudy. Inst. Obshch. Fiz. 13, 3 (1988)

    Google Scholar 

  48. I.N. Kartashev, A.A. Samokhin, I. Smurov., J. Phys. D. 38, 3703 (2005)

    Google Scholar 

  49. J.H. Yoo, S.H., Jeong, R. Greif, R.F. Ruso, J. Appl. Phys. 88, 1638 (2000)

    Article  ADS  Google Scholar 

  50. S.I. Anisimov, M.I. Tribel’skii, Ya.G. Epel’baum, Zh. Eksp. Teotr. Fiz. 78, 1597 (1980)

    ADS  Google Scholar 

  51. E.B. Levchenko, A.L. Chernyakov, Prikl. Mekh. Tekh. Fiz. 6, 144 (1982)

    Google Scholar 

  52. Ya.B. Zel’dovich, G.I. Barenblat, V.B. Librovich, et al., Matematicheskaya teoriya goreniya i vzryva (Matematical Theory of Combustion and Explosion) (Nauka, Moscow, 1980)

    Google Scholar 

  53. S.I. Anisimov, S.M. Gol’berg, O.L. Kulikov, et al., Pis’ma Zh. Tekh. Fiz. 9, 226 (1983)

    Google Scholar 

  54. A.M. Iskol’dskii, V.K. Pinus, Ya.G. Epel’baum, Preprint of Institute of Atomic Energy, Siberian Branch, Acad. Sci. USSR, no. 59, Novosibirsk, 1977

    Google Scholar 

  55. S.A. Akhmatov, V.I. Emel’yanov, N.I. Koroteev, V.N. Seminogov, Usp. Foz. Nauk 147, 675 (1985)

    Article  Google Scholar 

  56. M.C. Hutley, V.M. Bird, Optica Acta 20, 771 (1973)

    Article  Google Scholar 

  57. M.C. Hutley, Optica Acta 20, 607 (1973)

    Article  Google Scholar 

  58. I. Smurov, A. Lashin, M. Poli, in ICALERO (1992), Oct. 25–29, 1992, Orlando, Florida, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady G. Gladush .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gladush, G.G., Smurov, I. (2011). General Problems of Propagation of Laser Radiation in Gases and Plasma and Physical Processes on the Surface of Condensed Media. In: Physics of Laser Materials Processing. Springer Series in Materials Science, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19831-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19831-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19242-5

  • Online ISBN: 978-3-642-19831-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics