Advertisement

Robust Linear-Parameter Varying Autopilot Design for a Tail/Thrust Vector Controlled Missile

  • Berno J. E. Misgeld
  • Marco Darcis
  • Thomas Kuhn

Abstract

A robust autopilot design methodology using linear parameter varying transformations is presented and applied to a high-agile surface launched air defence missile, which is currently developed by Diehl-BGT-Defence. The lateral dynamics of the tail/thrust vector controlled missile are modelled as a second-order quasi-linear parameter varying (LPV) system. The incidence angle is used as exogenous variable, which is assumed to be estimated during missile flight. Decoupled lateral dynamics are assumed because of the application of a bank-to-turn manoeuvre plane angle control approach. Lateral single channel flight controllers are designed via H ∞ -optimal control and μ-synthesis with the LPV lateral dynamics, which are extended by uncertain models of control actuating system, time-delay and body bending model. The flight controllers for lateral dynamics are designed at a number of operating points described by the LPV model over the MACH flight envelope. The controllers are implemented using a gain scheduling approach, where an altitude dependent gain loss in the control loop is compensated with the inverse normalised air density. The flight controllers were implemented in the nonlinear simulation environment and tested in extreme flight manoeuvres. All flight controllers showed good damping and acceleration tracking performance and were stable during nonlinear simulations.

Keywords

Controller Design Inertial Measurement Unit Gain Schedule Linear Parameter Vary Flight Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nesline, F.W., Zarchan, P.: Robust Instrumentation Configurations for Homing Missile Flight Control. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Danvers, MA, August 1980, pp. 209–219 (1980)Google Scholar
  2. 2.
    Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36, 1401–1425 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Shamma, J.S., Cloutier, J.R.: Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations. Journal of Guidance, Control and Dynamics 16(2), 256–263 (1993)CrossRefGoogle Scholar
  4. 4.
    Kleinwächter, F., Kuhn, T.: Robuste Auslegung strukturfester Flugregler mittels Polvorgabe und Parameteroptimierung. DGLR-Jahrestagung, Friedrichshafen (2005)Google Scholar
  5. 5.
    Reichert, R.T.: Application of H ∞  Control to Missile Autopilot Design. In: AIAA Guidance, Navigation and Control Conference, Boston, MA, pp. 1065–1072 (1989)Google Scholar
  6. 6.
    Wise, K.A., Mears, B.C., Poolla, K.: Missile Autopilot Design Using H ∞  Optimal Control With μ-Synthesis. In: Proceedings of the American Control Conference, San Diego, CA, pp. 2363–2367 (1990)Google Scholar
  7. 7.
    Yang, S.M., Huang, N.H.: Application of H ∞  Control to Pitch Autopilot of Missiles. IEEE Transactions on Aerospace and Electronic Systems 32(1), 426–433 (1996)CrossRefGoogle Scholar
  8. 8.
    Jackson, P.: Applying μ-Synthesis to Missile Autopilot Design. In: Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, HI, pp. 2993–2998 (1990)Google Scholar
  9. 9.
    Buschek, H.: Full Envelope Missile Autopilot Design Using Gain Scheduled Robust Control. Journal of Guidance, Control and Dynamics 22(1), 115–122 (1999)CrossRefGoogle Scholar
  10. 10.
    Hyde, R.A.: H ∞  Aerospace Control Design. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Dold, R., Buschek, H.: Flight Test of a Scheduled μ-Synthesis Autopilot for an Air-To-Air Missile. In: AIAA Guidance, Navigation and Control Conference, Montreal, Canada (2001)Google Scholar
  12. 12.
    Misgeld, B.J.E., Dold, R., Kuhn, T., Buschek, H.: Robust Autopilot Design for a High-Agile Ground-to-Air Missile. DGLR-Jahrestagung, Hamburg (2010)Google Scholar
  13. 13.
    Tsourdos, A., Zbikowski, R., White, B.: Robust Autopilot for a Quasi-Linear Parameter-Varying Missile Model. Journal of Guidance, Control and Dynamics 24(2), 287–295 (2001)CrossRefGoogle Scholar
  14. 14.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. John Wiley and Sons, Chichester (2005)Google Scholar
  15. 15.
    Chiang, R.Y., Safonov, M.G.: Robust Control Toolbox, User’s Guide. The MathWorks Inc., Natick, MA (1992)Google Scholar
  16. 16.
    Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Berno J. E. Misgeld
    • 1
  • Marco Darcis
    • 1
  • Thomas Kuhn
    • 1
  1. 1.Diehl BGT DefenceÜberlingenGermany

Personalised recommendations