A Linear Parameter Varying Controller for a Re-entry Vehicle Benchmark

  • Andrés Marcos
  • Samir Bennani


In this article the design of a linear parameter varying controller for an atmospheric re-entry vehicle benchmark is presented. The control design approach used is based on the Single Quadratic Lyapunov Function approach. The re-entry vehicle used is a high-fidelity benchmark that includes full nonlinear motion, detailed aerodynamic database, nonlinear actuators, colored sensor models, realistic uncertainties and a control-surface mix logic. The latter logic fully couples the longitudinal and lateral/directional motions and together with the noise and uncertainties used result in a challenging and representative atmospheric re-entry benchmark. The results indicate that the LPV controller satisfies all the performance and robustness objectives and alleviates the designer task due to the automated gain-scheduled nature of the approach.


Bank Angle Gain Schedule Linear Time Invariant Linear Parameter Vary Monte Carlo Campaign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balas, G.J.: Flight control law design: An industry perspective. In: European Control Conference, Cambridge, UK (September 2003)Google Scholar
  2. 2.
    Jackson, E.B., Cruz, C.I., Ragsdale, W.A.: Real-Time Simulation Model of the HL-20 Lifting Body. NASA Technical Memorandum 107580 (July 1992)Google Scholar
  3. 3.
    Jackson, E.B., Cruz, C.I.: Preliminary Subsonic Aerodynamic Model for Simulation Studies of the HL-20 Lifting Body. NASA Technical Memorandum 4302 (1992)Google Scholar
  4. 4.
    Cruz, C.I., Ware, G.M.: Control Effectiveness and Tip-Fin Dihedral Effects for the HL-20 Lifting-Body Configuration at Mach Numbers from 1.6 to 4.5. NASA Technical Memorandum 4697 (1995)Google Scholar
  5. 5.
    Scallion, W.I.: Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air. NASA Technical Memorandum 209357 (September 1999)Google Scholar
  6. 6.
    Gage, S.: HL20 aeroblockset MATLAB. The MathworksGoogle Scholar
  7. 7.
    Powell, R.W.: Six-Degree-of-Freedom Guidance and Control-Entry Analysis of the HL-20. Journal of Spacecraft and Rockets 30(5) (1993)Google Scholar
  8. 8.
    Doyle, J.C., Lenz, K., Packard, A.: Design examples using mu-synthesis: Space shuttle lateral axis FCS during re-entry. In: IEEE Control Decision Conference, vol. 25, pp. 2218–2223 (1986)Google Scholar
  9. 9.
    Marcos, A., Veenman, J., Scherer, C., De Zaiacomo, G., Mostaza, D., Kerr, M., Bennani, S.: Application of LPV modeling, design and analysis methods to a re-entry vehicle. In: AIAA GNC 2010 (2010)Google Scholar
  10. 10.
    Szabó, Z., Marcos, A., Mostaza, D., Kerr, M., Rödöny, G., Bokor, J., Bennani, S.: Development of an Integrated LPV/LFT Framework: Modeling and Data-based Validation Tool. In: IEEE Control System Technologies (2011) (to be published)Google Scholar
  11. 11.
    Marcos, A., Bennani, S.: LPV Modelling, Analysis and Design in Space Systems: Rationale, Objectives and Limitations. In: AIAA GNC 2009 (2009)Google Scholar
  12. 12.
    Menon, P.P., Prempain, E., Postlethwaite, I., Bates, D., Bennani, S.: An LPV loop shaping controller design for the NASA HL-20 re-entry vehicle. In: AIAA GNC 2009 (2009)Google Scholar
  13. 13.
    Menon, P.P., Prempain, E., Postlethwaite, I., Bates, D., Bennani, S.: Nonlinear Worst-Case Analysis of an LPV Controller for Approach-Phase of a Re-entry Vehicle. In: AIAA GNC 2009 (2009)Google Scholar
  14. 14.
    Veenman, J., Köroğlu, H., Scherer, C.W.: Analysis of the Controlled NASA HL20 Atmospheric Re-entry Vehicle based on Dynamic IQCs. In: AIAA GNC 2009 (2009)Google Scholar
  15. 15.
    Veenman, J., Scherer, C.W., Köroğlu, H.: IQC-Based LPV Controller Synthesis for the NASA HL20 Atmospheric Re-entry Vehicle. In: AIAA GNC 2009 (2009)Google Scholar
  16. 16.
    Rugh, W.J., Shamma, F.: Research on Gain Scheduling. Automatica 36, 1401–1425 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Leith, D.J., Leithead, W.E.: Survey of Gain-Scheduling Analysis and Design. International Journal of Control 73(11), 1001–1025 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Balas, G.J.: Linear, parameter-varying control and its application to a turbofan engine. International Journal of Robust and Nonlinear Control 12, 763–796 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Marcos, A.: A gain scheduled H-infinity controller for a re-entry benchmark. In: AIAA GNC Conference 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrés Marcos
    • 1
  • Samir Bennani
    • 2
  1. 1.Deimos Space S.L.U.MadridSpain
  2. 2.ESA ESTEC, NoordwijkThe Netherlands

Personalised recommendations