Advertisement

Adaptive Control of a High Agility Model Airplane in the Presence of Severe Structural Damage and Failures

  • Stephan Baur
  • Travis Gibson
  • Anuradha Annaswamy
  • Leonhard Höcht
  • Thomas Bierling
  • Florian Holzapfel
Conference paper

Abstract

Adaptive control is a promising technology for future high-performance, safety-critical flight systems. By virtue of their ability to adjust control parameters as a function of online measurements, adaptive flight control systems offer improved performance and increased robustness. This paper addresses the adaptive control of extremely agile aircrafts in the presence of damages and failures. The FSD ExtremeStar, a modified version of the polystyrene model airplane Multiplex TwinStar II, is used as a platform for this purpose by offering a highly redundant set of control surfaces. The underlying nonlinear model, including the effect of all control inputs, is derived from first principles. A dynamic-inversion PI-error controller is proposed as the baseline controller for a model reference adaptive tracking control. The resulting performance is evaluated for aggressive maneuvers in the presence of elevator failures using the complete nonlinear model.

Keywords

Adaptive Control Adaptive Controller Pitching Moment Unmanned Aerial System Single Input Single Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Dover Publication, Inc., Mineola (1989)Google Scholar
  2. 2.
    Sharma, M., Lavretsky, E., Wise, K.A.: Application and Flight Testing of an Adaptive Autopilot on Precision Guided Munitions. In: AIAA Guidance, Navigation and Control Conference, Keystone, Colorado (2006)Google Scholar
  3. 3.
    Vos, D.: Five Steps to facilitating the convergence of manned and unmanned avia-tion. Rockwell Collins (2009), http://www.webfulfillment.com/cedargraphics/CF/RC/LP/106/images/UAS_eBook09_5mb.pdf (accessed September 5, 2010)
  4. 4.
    Michini, B.: Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles. Master Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (2009)Google Scholar
  5. 5.
    Johnson, E.N., Calise, A.J., Blauwe, H.D.: In Flight Validation of Adaptive Flight Control Methods. In: AIAA Guidance, Navigation and Control Conference, Honolulu, Hawaii (2008)Google Scholar
  6. 6.
    Chowdhary, G., Johnson, E.N.: Flight Test Validation of a Neural Network based Long Term Learning Adaptive Flight Controller. In: AIAA Guidance, Navigation and Control Conference, Chicago, Illinois (2009)Google Scholar
  7. 7.
    Johnson, E.N., Chowdhary, G.: Guidance and Control of an Airplane under Severe Structural Damage. In: AIAA Infotech@Aerospace, Atlanta, Georgia (2010)Google Scholar
  8. 8.
    Chowdhary, G., Johnson, E.N., Kimbrell, M.S., Chandramohan, R., Calise, A.: Flight Test Results of Adaptive Controllers in Presence of Severe Structural Damage. In: AIAA Guidance, Navigation and Control Conference, Toronto, Ontario, Canada (2010)Google Scholar
  9. 9.
    Wiedenmann, R.: 13 auf einen Streich, Modellflug zu Forschungszwecken. Modellflug-Praxis, Modellflieger, Issue 01/2010, Hamburg, Germany (2010)Google Scholar
  10. 10.
    Hunsaker, D., Snyder, D.: A Lifting-Line Approach to Estimating Propeller/Wing Interactions. In: 24th Applied Aerodynamics Conference, San Francisco, California (2006)Google Scholar
  11. 11.
    Johnson, W.: Helicopter Theory. Dover Publications, Inc., Mineola, N.Y (1980)Google Scholar
  12. 12.
    Dreier, M.E.: Introduction to Helicopter and Tiltrotor Flight Simulation. AIAA, Reston, VA (2007)Google Scholar
  13. 13.
    Phillips, W.F.: Mechanics of Flight. John Wiley & Sons Inc., Hoboken (2004)Google Scholar
  14. 14.
    Hunsaker, D.F.: A Numerical Blade Element Approach to Estimating Propeller Flow-fields. In: AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2007)Google Scholar
  15. 15.
    Hess, J.L., Valarezo, W.O.: Calculation of Steady Flow About Propellers using a Surface Panel Method. Journal of Propulsion and Power 1, 470–476 (1985)CrossRefGoogle Scholar
  16. 16.
    Fink, R.: USAF Stability and Control DATCOM (1978)Google Scholar
  17. 17.
    Witkowski, D.P., Lee, A.K., Sullivan, J.P.: Aerodynamic Interaction between Propellers and Wings. Journal of Aircraft 26, 829–836 (1989)CrossRefGoogle Scholar
  18. 18.
    Steiner, H.J., Baur, S., Hornung, M., Holzapfel, F.: Modeling of Propeller-Wing Aerody-namics Considering Large Number of Control Inputs. In: DGLR Conference, Hamburg (2010)Google Scholar
  19. 19.
    Blauwe, H.D., Johnson, E.N.: Nonlinear Modeling and Simulation of Small Unmanned Aerial Vehicle with Substantial Damage. In: AIAA Modeling and Simulation Technologies Conference, Chicago, Illinois (2009)Google Scholar
  20. 20.
    Holzapfel, F.: Nichtlineare adaptive Regelung eines unbemannten Fluggerätes. Ph.D. Thesis, Technische Universität München, Munich (2004)Google Scholar
  21. 21.
    Baur, S.: Simulation and Adaptive Control of a High Agile Aircraft in the Presence of Severe Structural Damage and Failures. Diplomarbeit, Technische Universität München, Munich and Massachusetts Institute of Technology, Cambridge, Massachusetts (2010)Google Scholar
  22. 22.
    Johnson, E.N.: Limited Authority Adaptive Flight Control. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, Georgia (2000)Google Scholar
  23. 23.
    Bierling, T., Höcht, L., Holzapfel, F., Maier, R., Wildschek, A.: Comparative Analysis of MRAC Architectures in a Unified Framework. In: AIAA Guidance, Navigation and Control Conference, Toronto, Ontario Canada (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stephan Baur
    • 1
  • Travis Gibson
    • 1
  • Anuradha Annaswamy
    • 1
  • Leonhard Höcht
    • 2
  • Thomas Bierling
    • 2
  • Florian Holzapfel
    • 2
  1. 1.Active Adaptive Control Laboratory (AAC)Massachusetts Institute of Technology (MIT)CambridgeUSA
  2. 2.Institute of Flight System Dynamics (FSD)Technische Universität München (TUM)GarchingGermany

Personalised recommendations