Advertisement

Deriving Labels and Bisimilarity for Concurrent Constraint Programming

  • Andrés Aristizábal
  • Filippo Bonchi
  • Catuscia Palamidessi
  • Luis Pino
  • Frank Valencia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6604)

Abstract

Concurrent constraint programming (ccp) is a well-established model for concurrency. Bisimilarity is one of the central reasoning techniques in concurrency. The standard definition of bisimilarity, however, is not completely satisfactory for ccp since it yields an equivalence that is too fine grained. By building upon recent foundational investigations, we introduce a labelled transition semantics and a novel notion of bisimilarity that is fully abstract w.r.t. the typical observational equivalence in ccp.

References

  1. 1.
  2. 2.
    Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Science, pp. 1–168. Clarendon Press, Oxford (1994)Google Scholar
  3. 3.
    Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous pi-calculus. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 147–162. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS, pp. 332–341. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  5. 5.
    Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile processes, nominal data, and logic. In: LICS, pp. 39–48 (2009)Google Scholar
  6. 6.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the mobile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: LICS, pp. 69–80 (2006)Google Scholar
  8. 8.
    Bonchi, F., Montanari, U.: Minimization algorithm for symbolic bisimilarity. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 267–284. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-calculus. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254–268. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    de Boer, F.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite computations in constraint programming. Theor. Comput. Sci. 151(1), 37–78 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concurrent constraint programming. Theor. Comput. Sci. 183(2), 281–315 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Di Gianantonio, P., Honsell, F., Lenisa, M.: Rpo, second-order contexts, and lambda-calculus. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 334–349. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Henkin, J.M.L., Tarski, A.: Cylindric Algebras (Part I). North-Holland, Amsterdam (1971)zbMATHGoogle Scholar
  15. 15.
    Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comput. Sci. 151(2), 437–486 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-calculi. In: LICS, pp. 322–331 (2010)Google Scholar
  17. 17.
    Johansson, M., Victor, B., Parrow, J.: A fully abstract symbolic semantics for psi-calculi. CoRR, abs/1002.2867 (2010)Google Scholar
  18. 18.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of concurrent constraint programming. Nord. J. Comput. 2(2), 181–220 (1995)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  21. 21.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  22. 22.
    Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for ccs. FI 16(1), 171–199 (1992)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness of linearity vs persistence in the asychronous pi-calculus. In: LICS, pp. 59–68 (2006)Google Scholar
  24. 24.
    Rathke, J., Sassone, V., Sobociński, P.: Semantic barbs and biorthogonality. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Rathke, J., Sobocinski, P.: Deconstructing behavioural theories of mobility. In: IFIP TCS, vol. 273, pp. 507–520. Springer, Heidelberg (2008)Google Scholar
  26. 26.
    Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: POPL, pp. 232–245 (1990)Google Scholar
  27. 27.
    Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: POPL, pp. 333–352 (1991)Google Scholar
  28. 28.
    Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS, pp. 311–320 (2005)Google Scholar
  29. 29.
    Sewell, P.: From rewrite rules to bisimulation congruences. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 269–284. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. 30.
    Saraswat, V.A.: Concurrent Constraint Programming. PhD thesis, Carnegie-Mellon University (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrés Aristizábal
    • 1
  • Filippo Bonchi
    • 2
  • Catuscia Palamidessi
    • 1
  • Luis Pino
    • 1
  • Frank Valencia
    • 1
  1. 1.Comète, LIX, Laboratoire de l’École Polytechnique associé à l’INRIAFrance
  2. 2.CNRS - Laboratoire de l’Informatique du ParallélismeENS LyonFrance

Personalised recommendations