FONTE: A Protégé Plug-in for Engineering Complex Ontologies

  • Jorge Santos
  • Luís Braga
  • Anthony G. Cohn
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 73)


Humans have a natural ability to reason about scenarios including spatial and temporal information but for several reasons the process of developing complex ontologies including time and/or space is still not well developed and it remains an one-off, labour intensive experience. In this paper we present Fonte (Factorising ONTology Engineering complexity), an ontology engineering methodology that relies on a divide and conquer strategy. The targeted complex ontology is built by assembling modular ontologies that capture temporal, spatial and domain (atemporal and aspatial) aspects. In order to support the proposed methodology we developed a plug-in for Protégé.


Ontologies Knowledge engineering Temporal/Spatial reasoning and representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representation. Elsevier, Amsterdam (2008)Google Scholar
  2. 2.
    Staab, S., Maedche, A.: Knowledge portals: Ontologies at work. AI Magazine 22, 63–75 (2001)Google Scholar
  3. 3.
    Vale, Z., Ramos, C., Faria, L., Malheiro, N., Marques, A., Rosado, C.: Real-time inference for knowledge-based applications in power system control centers. Journal on Systems Analysis Modelling Simulation (SAMS) 42, 961–973 (2002)Google Scholar
  4. 4.
    Milea, D., Frasincar, F., Kaymak, U.: An OWL-Based Approach Towards Representing Time in Web Information Systems. In: Procs of 20th Belgian-Dutch Conference on Artificial Intelligence, pp. 343–344 (2008)Google Scholar
  5. 5.
    Santos, J., Staab, S.: Engineering a complex ontology with time. In: 18th International Joint Conference on Artificial Intelligence (IJCAI), Acapulco/Mexico, pp. 1406–1407 (2003)Google Scholar
  6. 6.
    Santos, J., Staab, S.: FONTE - Factorizing ONTology Engineering complexity. In: The Second International Conference on Knowledge Capture (K-Cap 2003), Florida/USA, pp. 146–153 (2003)Google Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Stock, O.: Spatial and Temporal Reasoning. Kluwer Academic Publishers, Norwell (1997)CrossRefGoogle Scholar
  9. 9.
    Fisher, M., Gabbay, D., Vila, L. (eds.): Handbook of Temporal Reasoning in Artificial Intelligence. Foundations of Artificial Intelligence Series, vol. 1. Elsevier Science & Technology Books (2005)Google Scholar
  10. 10.
    Vila, L., Schwalb, E.: A theory of time and temporal incidence based on instants and periods. In: Proc.International Workshop on Temporal Representation and Reasoning, pp. 21–28 (1996)Google Scholar
  11. 11.
    Cohn, A.G., Renz, J.: Qualitative Spatial Representation and Reasoning. In: Handbook of Knowledge Representation, pp. 551–596. Elsevier, Amsterdam (2007)Google Scholar
  12. 12.
    Gruber, T.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing. In: Formal Ontology in Conceptual Analysis and Knowledge Representation, pp. 93–104. Kluwer, Dordrecht (1993)Google Scholar
  13. 13.
    Staab, S., Studer, R. (eds.): Handbook on Ontologies. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Studer, R., Decker, S., Fensel, D., Staab, S.: Situation and Perspective of Knowledge Engineering. In: Knowledge Engineering and Agent Technology, vol. 52. IOS Press, Amsterdam (2004)Google Scholar
  15. 15.
    Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in OWL. In: Proceedings of FOIS, pp. 226–236 (2006)Google Scholar
  16. 16.
    Lutz, C., Walther, D., Wolter, F.: Conservative Extensions in Expressive Description Logics. In: Veloso, M. (ed.) Procs. of Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 453–458. AAAI Press, Menlo Park (2007)Google Scholar
  17. 17.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity of ontologies. In: Proc. IJCAI 2007, pp. 298–304. AAAI, Menlo Park (2007)Google Scholar
  18. 18.
    Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R., Shadbolt, N., Van de Velde, W., Wielinga, B.: Knowledge engineering and management, The CommonKADS Methodology. MIT Press, Cambridge (1999)Google Scholar
  19. 19.
    Clark, P., Thompson, J., Porter, B.: Knowledge patterns. In: KR 2000, pp. 591–600 (2000)Google Scholar
  20. 20.
    Staab, S., Erdmann, M., Maedche, A.: Engineering ontologies using semantic patterns. In: Procs. IJCAI 2001 Workshop on E-Business & the Intelligent Web (2001)Google Scholar
  21. 21.
    Noy, N., Musen, M.: PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In: MIT Press/AAAI Press (ed.) Proc. AAAI 2000, Austin, Texas (2000)Google Scholar
  22. 22.
    Parent, C., Spaccapietra, S., Zimányi, E.: Conceptual Modeling for Traditional and Spatio-Temporal Applications: The MADS Approach. Springer-Verlag New York, Inc., Secaucus (2006)Google Scholar
  23. 23.
    Vilain, M., Kautz, H., Beek, P.: Constraint propagation algorithms: a revised report. Readings in Qualitative Reasoning about Physical Systems (1989)Google Scholar
  24. 24.
    Allen, J.: Maintaining knowledge about temporal intervals. Communication ACM 26, 832–843 (1983)CrossRefGoogle Scholar
  25. 25.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54, 199–227 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge Santos
    • 1
  • Luís Braga
    • 1
  • Anthony G. Cohn
    • 2
  1. 1.Departamento de Engenharia InformáticaInstituto Superior de EngenhariaPortoPortugal
  2. 2.School of ComputingLeeds UniversityLeedsU.K.

Personalised recommendations