Advertisement

Extracting Trustworthiness Tendencies Using the Frequency Increase Metric

  • Joana Urbano
  • Ana Paula Rocha
  • Eugénio Oliveira
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 73)

Abstract

Computational trust systems are currently considered enabler tools for the automation and the general acceptance of global electronic business-tobusiness processes, such as the sourcing and the selection of business partners outside the sphere of relationships of the selector. However, most of the existing trust models use simple statistical techniques to aggregate trust evidences into trustworthiness scores, and do not take context into consideration. In this paper we propose a situation-aware trust model composed of two components: Sinalpha, an aggregator engine that embeds properties of the dynamics of trust; and CF, a technique that extracts failure tendencies of agents from the history of their past events, complementing the value derived from Sinalpha with contextual information. We experimentally compared our trust model with and without the CF technique. The results obtained allow us to conclude that the consideration of context is of vital importance in order to perform more accurate selection decisions.

Keywords

Situation-aware Trust Dynamics of Trust Multi-agent Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramchurn, S., Sierra, C., Godo, L., Jennings, N.R.: Devising a trust model for multi-agent interactions using confidence and reputation. Int. J. Applied Artificial Intelligence 18, 833–852 (2004)CrossRefGoogle Scholar
  2. 2.
    Jøsang, A., Ismail, R.: The Beta Reputation System. In: Proceedings of the 15th Bled Electronic Commerce Conference, Sloven (2002)Google Scholar
  3. 3.
    Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Applied Artificial Intelligence 14(9), 881–908 (2000)CrossRefGoogle Scholar
  4. 4.
    Erete, I., Ferguson, E., Sen, S.: Learning task-specific trust decisions. In: Procs. 7th Int. J. Conf. on Autonomous Agents and Multiagent Systems, vol. 3 (2008)Google Scholar
  5. 5.
    Sabater, J.: Trust and Reputation for Agent Societies. Number 20 in Monografies de l’institut d’investigacio en intelligència artificial. IIIA-CSIC (2003)Google Scholar
  6. 6.
    Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems 13(2), 119–115 (2006)Google Scholar
  7. 7.
    Sabater, J., Paolucci, M., Conte, R.: Repage: Reputation and image among limited autonomous partners. Journal of Artificial Societies and Social Simulation 9, 3 (2006)Google Scholar
  8. 8.
    Castelfranchi, C., Falcone, R.: Principles of trust for MAS: cognitive anatomy, social importance, and quantification. In: Procs. Int. Conference on Multi-Agent Systems (1998)Google Scholar
  9. 9.
    Jonker, C.M., Treur, J.: Formal Analysis of Models for the Dynamics of Trust Based on Experiences. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS, vol. 1647, pp. 221–231. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Marsh, S., Briggs, P.: Examining Trust, Forgiveness and Regret as Computational Concepts. In: Golbeck, J. (ed.) Computing with Social Trust, pp. 9–43. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Melaye, D., Demazeau, Y.: Bayesian Dynamic Trust Model. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 480–489. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Tavakolifard, M.: Situation-aware trust management. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 413–416 (2009)Google Scholar
  13. 13.
    Neisse, R., Wegdam, M., Sinderen, M., Lenzini, G.: Trust management model and architecture for context-aware service platforms. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 1803–1820. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Rehak, M., Gregor, M., Pechoucek, M.: Multidimensional context representations for situational trust. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications, pp. 315–320 (2006)Google Scholar
  15. 15.
    Hermoso, R., Billhardt, H., Ossowski, S.: Dynamic evolution of role taxonomies through multidimensional clustering in multiagent organizations. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 587–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Urbano, J., Rocha, A.P., Oliveira, E.: Refining the Trustworthiness Assessment of Suppliers through Extraction of Stereotypes. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2010 - Proceedings of the 12th International Conference on Enterprise Information Systems, AIDSS, Funchal, Madeira, Portugal, vol. 2, pp. 85–92. SciTePress (2010), ISBN: 978-989-8425-05-8Google Scholar
  17. 17.
    Urbano, J., Rocha, A.P., Oliveira, E.: Computing Confidence Values: Does Trust Dynamics Matter? In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 520–531. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Straker, D.: Changing Minds: in Detail. Syque Press (2008)Google Scholar
  19. 19.
    Lapshin, R.V.: Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope. Review of Scientific Instruments 66(9), 4718–4730 (1995)CrossRefGoogle Scholar
  20. 20.
    Schlosser, A., Voss, M.: Simulating data dissemination techniques for local reputation systems. In: Procs. of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1173–1174 (2005)Google Scholar
  21. 21.
    Danek, A., Urbano, J., Rocha, A.P., Oliveira, E.: Engaging the Dynamics of Trust in Computational Trust and Reputation Systems. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 22–31. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Paliouras, G., Karkaletsis, V., Papatheodorou, C., Pyropoulos, C.D.: Exploiting Learning Techniques for the Acquisition of User Stereotypes and Communities. In: Procs. of UM 1999 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joana Urbano
    • 1
  • Ana Paula Rocha
    • 1
  • Eugénio Oliveira
    • 1
  1. 1.LIACC - Laboratory for Artificial Intelligence and Computer ScienceFaculdade de Engenharia da Universidade do Porto - DEIPortoPortugal

Personalised recommendations