Skip to main content

Nanocarriers to Deliver Photosensitizers in Topical Photodynamic Therapy and Photodiagnostics

  • Chapter
Nanocosmetics and Nanomedicines

Abstract

Topical photodynamic therapy is used for the prevention and treatment of non-melanoma skin cancer. Until recently, clinically approved indications have been restricted to superficial basal cell carcinoma and nodular, actinic keratoses and, since 2006, Bowen’s disease. Most photosensitizers are relatively hydrophobic and will be attracted to membranes, but even the exception molecules, having substituents that render them watersoluble, bind to membranes because of their hydrophobic ring systems. The primary function of the skin, however, is to protect the body from unwanted influences from the environment. This protection is provided primarily by the stratum corneum, which consists of corneocytes surrounded by lipid regions. The major limitation of PDT is the poor penetration of photosensitizers through biological barriers, like the skin. Over the past 10 years, a considerable number of studies have therefore been conducted on the development of different strategies to overcome these difficulties, including nanocarriers to delivery photosensitizers and their precursors, nanoemulsions, liposomes, ethosomes, invasomes, liquid crystals and magnetic nanoparticles, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chatterjee, D.K., Fong, L.S., Zhang, Y.: Nanoparticles in photodynamic therapy: An emerging paradigma. Adv. Drug Delivery Rev. 60, 1627–1637 (2008)

    CAS  Google Scholar 

  2. Medina, W.S., dos Santos, N.A., Curti, C., Tedesco, A.C., dos Santos, A.C.: Effects of zinc phthalocyanine tetrasulfonate-based photodynamic therapy on rat brain isolates mitochondria. Chem. Biol. Interact. 179, 402–406 (2009)

    CAS  Google Scholar 

  3. Hasan, T., Ortel, B., Moor, A.C.E., Pogue, B.W.: Photodynamic Therapy of Cancer. In: Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., et al. (eds.) Holland-Frei Cancer Medicine, 6th edn., BC Decker, Hamilton Canadá (2003)

    Google Scholar 

  4. Gouterman, M.: Oxygen quenching of luminescence of pressure sensitive paint for wind tunnel research. J. Chem. Educ. 74, 697–702 (1997)

    CAS  Google Scholar 

  5. Smith, G., Mcgimpsey, W.G., Lynch, M.C., Kochevar, I.E., Redmond, R.W.: An efficient oxygen-independent two-photon photosensitization mechanism. Photochem. Photobiol. 59, 135–139 (1994)

    CAS  Google Scholar 

  6. Donnelly, R.F., Mccarron, P.A., Woolfson, D.: Drug Delivery Systems for Photodynamic Therapy. Recent. Pat. Drug Deliv. Formul. 3, 1–7 (2009)

    CAS  Google Scholar 

  7. Morgan, J., Oseroff, A.R.: Mitochondria-based photodynamic anti-cancer therapy. Adv. Drug. Deliv. Rev. 49, 71–86 (2001)

    CAS  Google Scholar 

  8. Turro, N.J., Yekta, A.: Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J. Am Chem. Soc. 100, 5951–5952 (1978)

    CAS  Google Scholar 

  9. Choudhary, S., Nouri, K., Elsaie, M.L.: Photodynamic therapy in dermatology: a review. Lasers Med. Sci. 24, 971–980 (2009)

    Google Scholar 

  10. Babilas, P., Landthaler, M., Szeimies, R.: Photodynamic therapy in dermatology. Eur. J. Dermatol. 16, 340–348 (2006)

    CAS  Google Scholar 

  11. Niwa, A.B.M., Neto, C.F.: Photodynamic therapy in dermatology: basic principles and clinical use. An Bras Dermatol. 84, 445–459 (2009)

    Google Scholar 

  12. Allison, R.R., Sibata, C.H., Downie, G.H., Cuenca, R.E.: A clinical review of PDT for cutaneous malignancies. Photodiagnosis Photodyn. Ther. 3, 214–226 (2006)

    CAS  Google Scholar 

  13. De Leeuw, J., Van Der Beek, N., Bjerring, P., Neumann, H.A.: Photodynamic therapy of acne vulgaris using 5-aminolevulinic acid 0.5% liposomal spray and intense pulsed light in combination with topical keratolytic agents. J. Eur. Acad. Dermatol. Venereol. 24, 460–469 (2010)

    Google Scholar 

  14. Fadel, M., Salah, M.L., Samy, N., Mona, S.: Liposomal methylene bleu hydrogel for selective photodynamic therapy of acne vulgaris. J. Drugs Dermatol. 8, 983–990 (2009)

    Google Scholar 

  15. Turchiello, R.F., Vena, F.C.B., Maillard, P., Souza, C.S., Bentley, M.V.B.L., Tedesco, A.C.: Cubic phase gel as a drug delivery system for topical application of 5-ALA, its ester derivatives and m-THPC in photodynamic therapy (PDT). J. Photochem. Photobiol., B 70, 1–6 (2003)

    CAS  Google Scholar 

  16. Steluti, R., De Rosa, F.S., Collett, J., Tedesco, A.C., Bentley, M.V.L.B.: Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin. Eur. J. Pharm. Biopharm. 60, 439–444 (2005)

    CAS  Google Scholar 

  17. Bender, J.O., Ericson, M.B., Merclin, N., Iani, V., Rosén, A., Engstrom, S., Moan, J.: Lipid cubic phases for improved topical drug delivery in photodynamic therapy. J. Control Release 106, 350–360 (2005)

    CAS  Google Scholar 

  18. Garcia, F.S., Tedesco, A.C., Collett, J.H., Bentley, M.V.L.B.: Topical Delivery System for ZnPcSO4 based on liquid crystalline phases for use in PDT of skin cancer. In: 31st Annual Meeting and Exposition of Controlled Release Society, 2004, Honolulu-Hawai. Abstracts of 31st Annual Meeting and Exposition of Controlled Release Society, Honolulu, vol. 1, pp. 320–320 (2004)

    Google Scholar 

  19. Tsui-Min, T.: Mucoadhesive thermoresponsive medicament-carrier composition. United States Patent Application 20040009212 (2004)

    Google Scholar 

  20. Taylor, P.W., Love, W.G., Van Der Zanden, B.C.H.: Topically administrable zinc phthalocyanine compositions. US5616602 (1997)

    Google Scholar 

  21. Brow, S.B., O’Grady, C.C., Griffiths, J., Mellish, K.J., Vernon: D.I.: US20087371744 B2 (2008)

    Google Scholar 

  22. Allison, R.R., Downie, G.H., Cuenca, R., Hu, X.H., Childs, C.J.H., Sibata, C.H.: Photosensitizers in clinical PDT. Photodiagnosis Photodyn. Ther. 1, 27–42 (2004)

    CAS  Google Scholar 

  23. De Rosa, F.S.: Bentley MVLB Photodynamic Therapy of Skin Cancers: Sensitizers, Clinical Studies and Future Directives. Pharm. Res. 17, 1447–1455 (2000)

    Google Scholar 

  24. Robertson, C.A., Evans, D.H., Abrahamse, H.: Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem Photobiol, B 96, 1–8 (2009)

    CAS  Google Scholar 

  25. Robertson, C.A., Evans, H.D., Abrahamse, H.: Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol., B 17, 1–8 (2009)

    Google Scholar 

  26. Axcan Pharma, http://www.axcan.com (accessed September 20, 2010)

  27. Visudyne Verteporfin for injection, http://www.visudyne.com (accessed September 25, 2010)

  28. Winkelman, J.W., Collins, G.H.: Neurotoxicity of Tetraphenylporphinesulfonate Tpps4 and its relation to Photodynamic Therapy. Photochem. Photobiol. 46, 801–807 (1987)

    CAS  Google Scholar 

  29. Garcia, F.S., Nery, M.A., Tedesco, A.C., Bentley, M.V.L.B.: Phtalocyanine dyes: importance and future directives for use in photodynamic therapy of cancer. Trends in Photochemistry and Photobiology 10, 77–83 (2003)

    CAS  Google Scholar 

  30. Lieb, S., Szeimies, R.M., Lee, G.: Self adesive thin films for topical delivery of 5-aminolevulinic acid. Eur. J. Pharm. Biopharm. 53, 99–106 (2002)

    CAS  Google Scholar 

  31. Casas, A., Fukuda, G., Di Venosa, G., Del, A.M., Batlle, C.: The influence of the vehicle on the synthesis of porphyrins after topical application of 5- aminolevulinic acid implications in cutaneous photodynamic sensitisation. Br. J. Dermatol. 143, 564–572 (2000)

    CAS  Google Scholar 

  32. Malik, Z., Kostenich, G., Roitman, L., Ehrenberg, B., Orenstein, A.: Topical application of 5- aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice. J. Photochem. Photobiol., B 28, 213–218 (1995)

    CAS  Google Scholar 

  33. Morrow, D.I.J., Garland, M.J., Mccarron, P.A., Woolfson, A.D., Donnelly, R.F.: Innovative Drug Delivery Strategies for Topical Photodynamic Therapy using Porphyrin Precursors. J. Environ. Pathol. Toxicol. Oncol. 26, 105–116 (2007)

    CAS  Google Scholar 

  34. De Rosa, F.S., Collett, J., Tedesco, A.C., Bentley, M.V.L.B.: Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin. Eur. J. Pharm. Biopharm. 60, 439–444 (2005)

    Google Scholar 

  35. De Rosa, F.S., Tedesco, A.C., Lopez, R.F.V., Pierre, M.B.R., Lange, N., Marchetti, J.M., Rotta, J.C.G., Bentley, M.V.L.B.: In vitro skin permeation and retention of 5-aminolevulinic acid ester derivatives for photodynamic therapy. J. Control Release 89, 261–269 (2003)

    Google Scholar 

  36. Casas, A., Batlle, A.M., Butler, A.R., Robertson, D., Brown, E.H., Macrobert, A., Riley, P.A.: Comparative effect of 5-ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures. Br. J. Cancer 80, 1525–1532 (1999)

    CAS  Google Scholar 

  37. Lopez, R.F.V., Lange, N., Guy, R., Bentley, M.V.L.B.: Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters. Adv. Drug Deliv. Rev. 56, 77–94 (2004)

    CAS  Google Scholar 

  38. Dusa Pharmaceuticals, http://www.dusapharma.com/levulan-product-information.html (accessed September 22, 2010)

  39. Metvix Galderma, S.A., http://www.metvix.com/home/about-metvix/overview (acessed September 25, 2010)

  40. Spikes, J.D.: New trends in photobiology: Chlorins as photosensitizers in biology and medicine. J. Photochem. Photobiol., B 6, 259–274 (1990)

    CAS  Google Scholar 

  41. Biolitec Pharma, http://www.biolitecpharma.com/public/foscan.asp?s=foscan (acessed September 20, 2010)

  42. Kalka, K., Merk, H., Mukhtar, H.: Photodynamic therapy in dermatology. J. Am. Acad. Dermatol. 42, 389–413 (2000)

    CAS  Google Scholar 

  43. Dube, A., Sharma, S., Gupta, P.K.: Evaluation of chlorin p6 for photodynamic treatment of squamous cell carcinoma in the hamster cheek pouch model. Oral Oncol. 42, 77–82 (2006)

    CAS  Google Scholar 

  44. Sheleg, S., Zhavrid, E.A., Khodina, T.V., Kochubeev, G.A., Istomin, Y.P., Chalov, V.N., Zhuravkin, I.N.: Photodynamic therapy with chlorin e6 for skin metastases of melanoma. Photodermatol. Photoimmunol. Photomed. 20, 21–26 (2004)

    CAS  Google Scholar 

  45. Garcia, F.S., Nery, M.A., Tedesco, A.C., Bentley, M.V.L.B.: Phtalocyanine dyes: importance and future directives for use in photodynamic therapy of cancer. Trends in Photochem. Photobiol. 10, 77–83 (2003)

    CAS  Google Scholar 

  46. Kyriazi, M., Alexandratou, E., Yova, D., Rallis, M., Trebst, T.: Opical photodynamic therapy of murine non-melanoma skin carcinomas with aluminum phthalocyanine chloride and a diode laser: pharmacokinetics, tumor response and cosmetic outcomes. Photodermatol. Photoimmunol. Photomed. 24, 87–94 (2008)

    CAS  Google Scholar 

  47. Gao, L., Qian, X., Zhang, L., Zhang, Y.: Tetra-trifluoroethoxyl zinc phthalocyanine: potential photosensitizer for use in the photodynamic therapy of cancer. J. Photochem. Photobiol., B 65, 35–38 (2001)

    CAS  Google Scholar 

  48. Kassab, K., Fabris, C., Defilippis, M.P., Dei, D., Fantetti, L., Roncucci, G., Reddi, E., Jori, G.: Skin-photosensitizing properties of Zn(II)-2(3), 9(10), 16(17), 23(24)-tetrakis-(4-oxy-N-methylpiperidinyl) phthalocyanine topically administered to mice. J. Photochem. Photobiol., B 55, 128–137 (2000)

    CAS  Google Scholar 

  49. Fabris, C., Soncin, M., Miotto, G., Fantetti, L., Chiti, G., Dei, D., Roncucci, G., Jori, G.: Zn(II)-phthalocyanines as phototherapeutic agents for cutaneous diseases. Photosensitization of fibroblasts and keratinocytes. J. Photochem. Photobiol. B 83, 48–54 (2006)

    CAS  Google Scholar 

  50. Sessler, J.L., Miller, R.A.: New drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem. Pharmacol. 59, 733–739 (2000)

    CAS  Google Scholar 

  51. Boiy, A., De Witte, P.A.M., Roelandts, R.: Topical treatment of disseminated superficial actinic porokeratosis with hypericin—photodynamic therapy: A case report. Photodiagnosis Photodyn. Ther. 7, 123–125 (2010)

    CAS  Google Scholar 

  52. Tardivo, J.P., Del Giglio, A., De Oliveira, C.S., Gabrielli, D.S., Junqueira, H.C., Tada, D.B., Severino, D., Turchiello, R.F., Baptista, M.S.: Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis Photodyn. Ther. 2, 175–191 (2005)

    CAS  Google Scholar 

  53. Das, K., Jain, B., Patel, H.S.: Nile Blue in Triton-X 100/benzene–hexane reverse micelles: a fluorescence spectroscopic study. Spectrochimica Acta Part A 60, 2059–2064 (2004)

    Google Scholar 

  54. Hopper, C.: Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet. Oncol. 1, 212–219 (2000)

    CAS  Google Scholar 

  55. Szeimies, R.M., Calzavara-Pinton, P.G., Karrer, S., Ortel, B., Landthaler, M.: Topical photodynamic therapy in dermatology. J. Photochem. Photobiol., B 36, 213–219 (1996)

    CAS  Google Scholar 

  56. De Rosa, F.S., Bentley, M.V.L.B.: Photodynamic Therapy of Skin Cancers: Sensitizers, Clinical Studies and Future Directives. Pharm. Res. 17, 1447–1455 (2000)

    Google Scholar 

  57. Turchiello, R.F., Vena, F.C.B., Maillard, P.H., Souza, C.S., Bentley, M.V.B.L., Tedesco, A.C.: Cubic phase gel as a drug delivery system for topical application of 5-ALA, its ester derivatives and m-THPC in photodynamic therapy (PDT). J. Photochem. Photobiol., B 70, 1–6 (2003)

    CAS  Google Scholar 

  58. Wester, R.C., Maibach, H.I.: Understanding percutaneous absorption for occupational health and safety. Int. J. Occup. Environ. Health 6, 86–92 (2000)

    CAS  Google Scholar 

  59. Wertz, P.W., Van Den Bergh, B.: The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids 91, 85–96 (1998)

    CAS  Google Scholar 

  60. Bo, F., Engstramb, S., Engblomb, J., Norlkn, L.: A novel approach to the understanding of human skin barrier Function. J. Dermatol. Sci. 14, 115–125 (1997)

    Google Scholar 

  61. Bouwstra, J.A., Gooris, G.S., Dubbelaar, F.E.R., Ponec, M.: Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid. Res. 42, 1759–1770 (2001)

    CAS  Google Scholar 

  62. Bouwstra, J.A., Dubbelaar, F.E.R., Gooris, G.S., Ponec, M.: The lipid organization in the skin barrier. Acta Derm. Venereol. 208, 23–30 (2000)

    CAS  Google Scholar 

  63. Bouwstra, J.A., Gooris, G.S., Cheng, K., Weerheim, A., Bras, W., Ponec, M.: Phase behaviour of isolated skin lipids. J. Lipid. Res. 37, 999–1011 (1996)

    CAS  Google Scholar 

  64. Naik, A., Kalia, Y.N., Guy, R.H.: Transdermal drug delivery: overcoming the skin’s barrier function. PSTT 3, 9 (2000)

    Google Scholar 

  65. Kalka, K., Merk, H., Mukhtar, H.: Photodynamic therapy in dermatology. J. Acad. Dermatol. 42, 389–413 (2000)

    CAS  Google Scholar 

  66. Darlenski, R., Sassning, S., Tsankov, N., Fluhr, J.W.: Non-invasive in vivo methods for investigation of the skin barrier physical properties. Eur. J. Pharm. Biopharm. 72, 295–303 (2009)

    CAS  Google Scholar 

  67. Bouwstra, J.A., Ponec, M.: The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 1758, 2080–2095 (2006)

    CAS  Google Scholar 

  68. Fartash, M.: Epidermal barrier in disorders of the skin. Microsc. Res. Tech. 38, 361–372 (1997)

    Google Scholar 

  69. Hutcheson, A.C.S.H., Fisher, A.H., Lang, P.G.J.R.: Basal cell carcinomas with unusual histologic patterns. J. Am Acad. Dermatol. 53, 833–837 (2005)

    Google Scholar 

  70. Bouwstra, J.A.: The skin barrier, a well-organized membrane. Colloids Surf A Physicochem. Eng. Asp. 124, 403–413 (1997)

    Google Scholar 

  71. Ibbotson, S.H.: An overview of topical photodynamic therapy in Dermatology. Photodiagnosis Photodyn. Ther. 7, 16–23 (2010)

    Google Scholar 

  72. Cairnduff, F., Stringer, M.R., Hudson, E.J., Ash, D.V., Brown, S.B.: Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. Br. J. Cancer 69, 605–608 (1994)

    CAS  Google Scholar 

  73. Sun, Y., Chen, Z., Yang, X., Huang, P., Zhou, X., Du, X.: Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. Nanotechnology 20 135102, 8 (2009)

    Google Scholar 

  74. Jenning, V., Gysler, A., Schaèfer-Korting, M., Gohla, S.H.: Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 49, 211–218 (2000)

    CAS  Google Scholar 

  75. Alvarez-Román, R., Barré, G., Guy, R.H., Fessi, H.: Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection. Eur. J. Pharm. Biopharm. 52, 191–195 (2001)

    Google Scholar 

  76. Dahms, G.: 22nd International Federation of Societies of Cosmetic Chemists Congress. Edinburgh Oral Proceedings Keynote Lecture, pp. 519-529 (2002)

    Google Scholar 

  77. Pierre, M.B.R., Marchetti, J.M., Tedesco, A.C., Bentley, M.V.L.B.: Potential incorporation of 5- aminolevulinic acid in micelles and stratum corneum lipids liposomes: fluorescence quenching studies. Rev. Bras. Cienc. Farm. 37, 355–361 (2001)

    CAS  Google Scholar 

  78. Bender, J., Ericson, M.B., Merclin, N., Iani, V., Rosén, A., Engstrom, S., Moan, J.: Lipid cubic phases for improved topical drug delivery in photodynamic therapy. J. Control Release 106, 350–360 (2005)

    CAS  Google Scholar 

  79. Primo, F.L., Rodrigues, M.M.A., Simioni, A.R., Bentley, M.V.L.B., Morais, P.C., Tedesco, A.C.: In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment. J. Magn. Magn. Mater. 320, 211–214 (2008)

    Google Scholar 

  80. Klesing, J., Wiehe, A., Gitter, B., Gräfe, S., Epple, M.: Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy. J. Mater. Sci. Mater. Med. 21, 887–892 (2010), doi:10.1007/s10856-009-3934-7

    CAS  Google Scholar 

  81. Vargas, A., Lange, N., Arvinte, T., Cerny, R., Gurny, R., Delie, F.: Toward the understanding of the photodynamic activity of m-THPP encapsulated in PLGA nanoparticles: correlation between nanoparticle properties and in vivo activity. J. Drug Target 17, 599–609 (2009)

    CAS  Google Scholar 

  82. Lee, S.J., Park, K., Oh, Y., Kwon, S., Her, S., Kim, I., Choi, K., Lee, S.J., Kim, H., Lee, S.G.: Kwon KKIC Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials 30, 2929–2939 (2009)

    CAS  Google Scholar 

  83. Brasseur, N., Brault, D., Couvreur, P.: Adsorption of hematoporphyrin onto polyalkylcyanoacrylate nanoparticles: carrier capacity and drug release. Int. J. Pharm. 70, 129–135 (1991)

    CAS  Google Scholar 

  84. Labib, A., Lenaerts, V., Chouinard, F., Leroux, J.C., Ouellet, R., Van Lier, J.E.: Biodegradable Nanospheres Containing Phthalocyanines and Naphthalocyanines for Targeted Photodynamic Tumor Therapy. Pharm. Res. 8, 1027–1031 (1991)

    CAS  Google Scholar 

  85. Konan-Kouakou, Y.N., Boch, R., Gurny, R., Allemann, E.: In vitro and in vivo activities of verteporfin-loaded nanoparticles. J. Control Release 103, 83–91 (2005)

    CAS  Google Scholar 

  86. Konan, Y.N., Gurny, R., Allemann, E.: State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol., B 66, 89–106 (2002)

    CAS  Google Scholar 

  87. Chatterjee, D.K., Fong, L.S., Zhang, Y.: Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 60, 1627–1637 (2008)

    CAS  Google Scholar 

  88. Ghosh, P.K., Murthy, R.S.R.: Microemulsions: a potential drug delivery system. Curr. Drug Deliv. 3, 167–180 (2006)

    CAS  Google Scholar 

  89. Guglielmini, G.: Nanostructured novel carrier for topical application. Clin. Dermatol. 26, 341–346 (2008)

    Google Scholar 

  90. Shafiq-Un-Nabi, S., Shakeel, F., Talegaonkar, S., Ali, J., Baboota, S., Ahuja, A., Khar, R.K., Ali, M.: Formulation Development and Optimization Using Nanoemulsion Technique: A Technical Note. AAPS Pharm. Sci. Tech. 8(2), Article 28 (2007)

    Google Scholar 

  91. Dahms, G.: 22nd International Federation of Societies of Cosmetic Chemists Congress. Edinburgh Oral Proceedings Keynote Lecture, pp. 519–529 (2002)

    Google Scholar 

  92. Tadros, T.: Presented at: 21st International Federation of Societies of Cosmetic Chemists Congress. Berlin Oral Proceedings, pp. 442–458 (2000)

    Google Scholar 

  93. Primo, F.L., Michieleto, L., Rodrigues, M.A.M., Macaroff, P.P., Morais, P.C., Lacava, Z.G.M., Bentley, M.V.L.B., Tedesco, A.C.: Magnetic nanoemulsions as drug delivery system for Foscans: Skin permeation and retention in vitro assays for topical application in photodynamic therapy (PDT) of skin cancer. J. Magn. Magn. Mater. 311, 354–357 (2007)

    CAS  Google Scholar 

  94. Gulati, M., Grover, M., Singh, S., Singh, M.: Lipophilic drug derivatives in liposomes. Int. J. Pharm. 165, 129–168 (1998)

    CAS  Google Scholar 

  95. Derycke, A.S.L., De Witte, P.A.M.: Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 56, 17–30 (2004)

    CAS  Google Scholar 

  96. Pierre, M.B.R., Tedesco, A.C., Marchetti, J.M., Bentley, M.V.L.B.: Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol. 1, 5 (2001), doi:10.1186/1471-5945-1-5.

    CAS  Google Scholar 

  97. Han, I., Jun, M.S., Kim, S.K., Kim, M., Kim, J.C.: Expression pattern and intensity of protoporphyrin IX induced by liposomal 5-aminolevulinic acid in rat pilosebaceous unit throughout hair cycle. Arch. Dermatol. Res. 297, 210–217 (2005)

    CAS  Google Scholar 

  98. Di Venosa, G., Hermida, L., Batlle, A., Fukuda, H., Defain, M.V., Mamone, L., Rodriguez, L., Macrobert, A., Casas, A.: Characterization of liposomes containing aminolevulinic acid and derived esters. J. Photochem. Photobiol. B 92, 1–9 (2008)

    Google Scholar 

  99. Tapajós, E.C.C., Longo, J.P., Simioni, A.R., Lacava, Z.G.M., Santos, M.F.M.A., Morais, P.C., Azedesco, A.C., Azevedo, R.B.: In vitro photodynamic therapy on human oral keratinocytes using chloroaluminum-phthalocyanine. Oral Oncol. 44, 1073–1079 (2008)

    Google Scholar 

  100. Dragicevic-Curic, N., Scheglmann, D., Albrecht, V., Fahr, A.: Characterization, stability and in vitro skin penetration studies. Colloids and Surfaces B Biointerfaces 74, 114–122 (2009)

    CAS  Google Scholar 

  101. Fadel, M., Salah, M., Samy, N., Mona, S.: Liposomal methylene blue hydrogel for selective photodynamic therapy of acne vulgaris. J. Drugs Dermatol. 8, 983–990 (2009)

    Google Scholar 

  102. Rajashree, H., Harshal, G., Suneeta, S., Sujata, L., Vilasrao, K.: Ethosomes and its Applications in Transdermal Drug Delivery. Curr. Drug Ther. 4, 92–100 (2009)

    Google Scholar 

  103. Fang, Y., Tsai, Y., Wu, P., Huang, Y.: Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int. J. Pharm. 356, 144–152 (2008)

    CAS  Google Scholar 

  104. Fang, Y.P., Huang, Y.B., Wu, P.C., Tsai, Y.H.: Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur. J. Pharm. Biopharm. 73, 391–398 (2009)

    CAS  Google Scholar 

  105. Song, Y., Kim, C.: Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials 27, 271–280 (2006)

    CAS  Google Scholar 

  106. Dragicevic-Curic, N., Gräfe, S., Gitter, B., Winter, S., Fahr, A.: Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability. Int. J. Pharm. 384, 100–108 (2010)

    CAS  Google Scholar 

  107. Dragicevic-Curic, N., Scheglmann, D., Albrecht, V., Fahr, A.: Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J. Control Release 127, 59–69 (2008)

    CAS  Google Scholar 

  108. Dragicevic-Curic, N., Gräfe, S., Albrecht, V., Fahr, A.: Topical application of temoporfin-loaded invasomes for photodynamic therapy of subcutaneously implanted tumours in mice: A pilot study. J. Photochem. Photobiol. B 91, 41–50 (2008)

    CAS  Google Scholar 

  109. Dragicevic-Curic, N., Scheglmann, D., Albrecht, V., Fahr, A.: Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces 70, 198–206 (2009)

    CAS  Google Scholar 

  110. Singh, S.: Phase transitions in liquid crystals. Phys. Rep. 324, 107–269 (2000)

    CAS  Google Scholar 

  111. Tyle, P.: Liquid Crystals and their applications in drug delivery. In: Rosoff, M. (ed.) Controlled Release of Drugs: Polymer and Aggregate Systems, ch. 4, pp. 125–162. VCH Publishers, New York (1989)

    Google Scholar 

  112. Alfons, K., Sven, E.M.: Drug Compatibility with the Sponge Phases Formed in Monoolein, Water, and Propylene Glycol or Poly(ethylene glycol). J. Pharm. Sci. 87, 1527–1530 (1998)

    CAS  Google Scholar 

  113. Carr, M.G., Corish, J., Corrigan, O.I.: Drug delivery from a liquid crystalline base across Visking and human stratum corneum. Int. J. Pharm. 157, 35–42 (1997)

    CAS  Google Scholar 

  114. Ganem-Quintanar, A., Quintanar-Guerrero, D., Buri, P.: Monoolein: a review of the pharmaceutical applications. Drug Dev. Ind. Pharm. 26, 809–820 (2000)

    CAS  Google Scholar 

  115. Caboi, F., Amico, G.S., Pitzalis, P., Monduzzi, M., Nylander, T., Larsson, K.: Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein:water system. I. Phase behavior. Chem. Phys. Lipids 109, 47–62 (2001)

    CAS  Google Scholar 

  116. Clogston, J., Rathman, J., Tomasko, D., Walker, H., Caffrey, M.: Phase behavior of a monoacylglycerol (Myverol 18-99K):water system. Chem. Phys. Lipids 107, 191–220 (2000)

    CAS  Google Scholar 

  117. Chang, C.M., Bodmeier, R.: Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int. J. Pharm. 173, 51–60 (1998)

    CAS  Google Scholar 

  118. Shah, J.C., Sadhale, Y., Chilukuri, M.D.: Cubic phase gels as drug delivery systems. Adv. Drug. Del. Rev. 47, 229–250 (2001)

    CAS  Google Scholar 

  119. Bender, J., Ericson, M.B., Merclin, N., Iani, V., Rosen, A., Engstrom, M.J.: Lipid cubic phases for improved topical drug delivery in photodynamic therapy. J. Control Release 106, 350–360 (2005)

    CAS  Google Scholar 

  120. Lopes, L.B., Ferreira, D.A., Paula, D., Garcia, M.T.J., Thomazini, J.A., Fantini, M.C., Bentley, M.V.L.B.: Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin permeation of cyclosporin A. Pharm. Res. 23, 1332–1342 (2006)

    CAS  Google Scholar 

  121. Babincova, M., Babinec, P.: Magnetic Drug Delivery And Targeting:Principles And Applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 153, 243–250 (2009)

    CAS  Google Scholar 

  122. Morrish, A.H.: Physical Principles of Magnetism. IEEE Press, New York (2001)

    Google Scholar 

  123. Jain, T.K., Morales, M.A., Sahoo, S.K., Leslie-Pelecky, D.L., Labhasetwar, V.: Ion-oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharmacol. 2, 194–205 (2005)

    CAS  Google Scholar 

  124. Chertok, B., Moffat, B.A., David, A.E., Yu, F., Bergemann, C., Ross, B.D.: Iron oxide nanoparticles as a drug delivery vehicle for MRI monitores magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008)

    CAS  Google Scholar 

  125. Lu, Z.R., Ye, F., Vaidya, A.: Polymer Platforms for Drug Delivery and Biomedical Imaging. J. Control Release 122, 269–277 (2007)

    CAS  Google Scholar 

  126. Schwertmann, U., Cornell, R.M.: Iron oxides in the laboratory: preparation and characterization. VCH, Weinheim (1991)

    Google Scholar 

  127. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    CAS  Google Scholar 

  128. Berry, C.C., Curtis, A.S.G.: Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R198–R206 (2003)

    Google Scholar 

  129. Sajja, H.K., East, M.P., Mao, H., Wang, Y.A., Nie, S., Yang, L.: Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol. 6, 43–51 (2009)

    CAS  Google Scholar 

  130. Kikumori, T., Kobayashi, T., Sawaki, M., Imai, T.: Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticleloaded anti-HER2 immunoliposomes. Breast. Cancer. Res. Treat. 113, 435–441 (2009)

    CAS  Google Scholar 

  131. Babincova, M., Babinec, P.: Possibility of magnetic targeting of drugs using magnetoliposomes. Pharmazie 50, 828–829 (1995)

    CAS  Google Scholar 

  132. Yamashita, J., Shiono, M., Hato, M.: New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains. J. Phys. Chem. B 112, 12286–12296 (2008)

    CAS  Google Scholar 

  133. Lee, E.S., Oh, Y.T., Youn, Y.S., Nam, M., Park, B., Yun, J., Kim, J.H., Song, H.T., Oh, K.T.: Binary mixing of micelles using Pluronics for a nanosized drug delivery system. Colloids Surf B Biointerfaces (2011), doi:10.1016/j.colsurfb.2010.08.033

    Google Scholar 

  134. Ferreira, D.A., Bentley, M.V.L.B., Karlsson, G., Edwards, K.: Cryo-TEM investigation of phase behaviour and aggregate structure in dilute dispersions of monoolein and oleic. Int. J. Pharm. 310, 203–212 (2006)

    CAS  Google Scholar 

  135. Lopes, L.B., Spereta, F.F.F., Bentley, M.V.L.B.: Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur. J. Pharm. Sci. 32, 209–215 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Medina, W.S.G., Praça, F.S.G., Carollo, A.R.H., Bentley, M.V.L.B. (2011). Nanocarriers to Deliver Photosensitizers in Topical Photodynamic Therapy and Photodiagnostics. In: Beck, R., Guterres, S., Pohlmann, A. (eds) Nanocosmetics and Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19792-5_15

Download citation

Publish with us

Policies and ethics