Skip to main content

Multiple Scattering: Dispersion, Temperature Dependence, and Annular Pistons

Part of the Springer Proceedings in Physics book series (SPPHY,volume 137)

Abstract

We review various applications of the multiple scattering approach to the calculation of Casimir forces between separate bodies, including dispersion, wedge geometries, annular pistons, and temperature dependence. Exact results are obtained in many cases.

Keywords

  • Multiple Scattering
  • Wilkinson Microwave Anisotropy Probe
  • Casimir Force
  • Casimir Energy
  • Dielectric Slab

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-19760-4_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-19760-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” arXiv:1001.4538 [astro-ph.CO].

    Google Scholar 

  2. S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61, 1 (1989).

    MathSciNet  ADS  MATH  CrossRef  Google Scholar 

  3. O. Kenneth and I. Klich, “Casimir Forces in a T Operator Approach,” Phys. Rev. B 78, 014103 (2008) [arXiv:0707.4017 [quant-ph]].

    Google Scholar 

  4. J. Schwinger, L. L. DeRaad, Jr., K. A. Milton and W.-y. Tsai, Classical Electrodynamics, Advanced Book Program, Perseus Books (Westview Books) 1998.

    Google Scholar 

  5. J. S. Schwinger, L. L. DeRaad, Jr., and K. A. Milton, “Casimir Effect in Dielectrics,” Ann. Phys. (NY) 115, 1 (1979).

    Google Scholar 

  6. K. A. Milton, J. Wagner, P. Parashar and I. Brevik, “Casimir Energy, Dispersion, and the Lifshitz Formula,” Phys. Rev. D 81, 065007 (2010) [arXiv:1001.4163 [cond-mat.other]].

    Google Scholar 

  7. P. Parashar, K. A. Milton, I. Cavero-Pel´aez and K. V. Shajesh, “Electromagnetic Non-contact Gears: Prelude,” in K. A. Milton and M. Bordag, eds., Proceedings of the 9th Conference on Quantum Field Theory Under the Influence of External Conditions (World Scientific, Singapore, 2010), p. 48. arXiv:1001.4105 [cond-mat.other].

    Google Scholar 

  8. I. Cavero-Pel´aez, K. A. Milton, P. Parashar and K. V. Shajesh, “Non-Contact Gears: I. Nextto- Leading Order Contribution to Lateral Casimir Force Between Corrugated Parallel Plates,” Phys. Rev. D 78, 065018 (2008) [arXiv:0805.2776 [hep-th]].

    Google Scholar 

  9. T. Emig, A. Hanke, R. Golestanian and M. Kardar, “Normal and Lateral Casimir Forces Between Deformed Plates,” Phys. Rev. A 67, 022114 (2003).

    ADS  CrossRef  Google Scholar 

  10. I. Brevik, S. A˚ . Ellingsen and K. A. Milton, “Electrodynamic Casimir Effect in a Medium-Filled Wedge,” Phys. Rev. E 79, 041120 (2009) [arXiv:0901.4214 [quant-ph]].

    Google Scholar 

  11. S. A˚ . Ellingsen, I. Brevik and K. A. Milton, “Electrodynamic Casimir Effect in a Medium-Filled Wedge II,” Phys. Rev. E 80, 021125 (2009) [arXiv:0905.2088 [hep-th]].

    Google Scholar 

  12. S. A˚ . Ellingsen, I. Brevik and K. A. Milton, “Casimir Effect at Nonzero Temperature for Wedges and Cylinders,” Phys. Rev. D 81, 065031 (2010) [arXiv:1001.2630 [hep-th]].

    Google Scholar 

  13. K. A. Milton, J. Wagner and K. Kirsten, “Casimir Effect for a Semitransparent Wedge and an Annular Piston,” Phys. Rev. D 80, 125028 (2009) [arXiv:0911.1123 [hep-th]].

    Google Scholar 

  14. K. A. Milton, P. Parashar, J. Wagner, and I. Cavero-Pel´aez. “Multiple Scattering Casimir Force Calculations: Layered and Corrugated Materials,Wedges, and Casimir-Polder Forces,” arXiv:0910.3215 [hep-th], in the Proceedings of Casimir 2009, Yale, August 2009, J. Vac. Sci. Technol. B 28, C4A8-C4A16 (2010).

    Google Scholar 

  15. F. Zhou and L. Spruch, “Van der Waals and Retardation (Casimir) Interactions of an Electron or an Atom with Multilayered Walls,” Phys. Rev. A 52, 297 (1995).

    ADS  CrossRef  Google Scholar 

  16. M. S. Tomaˇs, “Casimir Force in Absorbing Multilayers,” Phys. Rev. A 66, 052103 (2002) [arXiv:quant-ph/0207106].

    Google Scholar 

  17. M. Bordag, G. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, 2009).

    Google Scholar 

  18. V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 2006).

    Google Scholar 

  19. R. Salem, Y. Japha, J. Chab´e, B. Hadad, M. Keil, K. A. Milton, and R. Folman, “Nanowire Atomchip Traps for Sub-Micron Atom-Surface Distances,” New J. Phys. 12, 023039, (2010).

    Google Scholar 

  20. K. A. Milton, P. Parashar, J. Wagner, and K.V. Shajesh, “Exact Casimir Energies at Nonzero Temperature: Validity of Proximity Force Approximation and Interaction of Semitransparent Spheres,” arXiv:0909.0977, to appear in Erber Festschrift, ed. P. Johnson.

    Google Scholar 

  21. R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D. Lopez and V. M. Mostepanenko, “Application of the Proximity Force Approximation to Gravitational and Yukawa-Type Forces,” Phys. Rev. D 79, 124021 (2009) [arXiv:0903.1299 [quant-ph]].

    Google Scholar 

  22. D. A. R. Dalvit and R. Onofrio, “On the Use of the Proximity Force Approximation for Deriving Limits to Short-Range Gravitational-Like Interactions from Sphere-Plane Casimir Force Experiments,” Phys. Rev. D 80, 064025 (2009) [arXiv:0909.3068 [quant-ph]].

    Google Scholar 

  23. K. A. Milton, “Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity,” arXiv:1005.0031 [hep-th], to be published in a Lecture Notes in Physics volume by Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimball A. Milton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milton, K.A., Wagner, J., Parashar, P., Cavero-Peláez, I., Brevik, I., Ellingsen, S.Å. (2011). Multiple Scattering: Dispersion, Temperature Dependence, and Annular Pistons. In: Odintsov, S., Sáez-Gómez, D., Xambó-Descamps, S. (eds) Cosmology, Quantum Vacuum and Zeta Functions. Springer Proceedings in Physics, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19760-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19760-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19759-8

  • Online ISBN: 978-3-642-19760-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)