Skip to main content

A characteristic signature of fourth order gravity

Part of the Springer Proceedings in Physics book series (SPPHY,volume 137)

Abstract

We present for the first time the complete matter power spectrum for Rn gravity which has been derived from the fourth order scalar perturbation equations. This leads to the discovery of a characteristic signature of fourth order gravity in the matter power spectrum, the details of which have not seen before in other studies in this area and therefore provides a crucial test for fourth order gravity on cosmological scales.

Keywords

  • Power Spectrum
  • Density Perturbation
  • Cosmological Perturbation
  • Matter Power Spectrum
  • Small Scale Perturbation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-19760-4_15
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-19760-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Ostriker and P. J. Steinhardt, Cosmic Concordance, [arXiv:astro-ph/9505066].

    Google Scholar 

  2. D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985); J. Z. Simon, Phys. Rev. D 41 (1990) 3720; K. Forger, B. A. Ovrut, S. J. Theisen and D. Waldram, Phys. Lett. B 388, 512 (1996) [arXiv:hep-th/9605145]; G. Cognola, E. Elizalde, S. Nojiri, S. Odintsov and S. Zerbini, Phys. Rev. D 75, 086002 (2007) [arXiv:hep-th/0611198].

    Google Scholar 

  3. N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge (1982).

    Google Scholar 

  4. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002) [arXiv:gr-qc/0201033]; S. Capozziello, S. Carloni and A. Troisi, “Recent Research Developments in Astronomy & Astrophysics”-RSP/AA/21 (2003) [arXiv:astro-ph/0303041].

    Google Scholar 

  5. S. Carloni, P. K. S. Dunsby, S. Capozziello and A. Troisi, “Cosmological dynamics of Rn gravity”, Class. Quant. Grav. 22, 4839 (2005) [arXiv:gr-qc/0410046]; T. Clifton and J. D. Barrow, Phys. Rev. D 72, 103005 (2005) [arXiv:gr-qc/0509059];

    Google Scholar 

  6. B. Li, J. D. Barrow, D. F. Mota and H. Zhao, arXiv:0805.4400 [gr-qc]; Y. S. Song, W. Hu and I. Sawicki, Phys. Rev. D 75, 044004 (2007) [arXiv:astro-ph/0610532]; E. Bertschinger and P. Zukin, Phys. Rev. D 78, 024015 (2008) [arXiv:0801.2431 [astro-ph]];W. Hu and I. Sawicki, Phys. Rev. D 76, 104043 (2007) [arXiv:0708.1190 [astro-ph]]; H. Oyaizu, M. Lima andW. Hu, arXiv:0807.2462 [astro-ph].

    Google Scholar 

  7. G. F. R. Ellis & M. Bruni Phys Rev D 40 1804 (1989); M. Bruni, P. K. S. Dunsby & G. F. R. Ellis, Ap. J. 395 34 (1992).

    Google Scholar 

  8. S. Carloni, P. Dunsby, S. Capozziello & A. Troisi Class. Quant. Grav. 22, 4839 (2005).

    ADS  MATH  CrossRef  Google Scholar 

  9. S. Carloni, A. Troisi and P. K. S. Dunsby, [arXiv:0706.0452]. To appear in General Relativity and Gravitation (2009).

    Google Scholar 

  10. Dynamical System in Cosmology edited by Wainwright J and Ellis G F R (Cambridge: Cambridge Univ. Press 1997) and references therein.

    Google Scholar 

  11. G. F. R. Ellis, M. Bruni and J. Hwang, Phys. Rev. D 42 (1990) 1035 (1990).

    Google Scholar 

  12. S. Carloni, P. K. S. Dunsby and A. Troisi, “The evolution of density perturbations in f (R) gravity,” Phys. Rev. D 77, 024024 (2008) arXiv:0707.0106 [gr-qc].

    Google Scholar 

  13. P. Coles and F. Lucchin, Chichester, UK: Wiley (1995) 449 p

    Google Scholar 

  14. T. Padmanabhan, AIP Conf. Proc. 843 (2006) 111 [arXiv:astro-ph/0602117]; T. Padmanabhan “Structure Formation in the Universe” Cambridge university press (Cambridge)

    Google Scholar 

  15. P. K. S. Dunsby, M. Bruni and G. F. R. Ellis, Astrophys. J. 395, 54 (1992).

    ADS  CrossRef  Google Scholar 

  16. S. Capozziello, V. F. Cardone and A. Troisi, Mon. Not. Roy. Astron. Soc. 375 (2007) 1423 [arXiv:astro-ph/0603522].

    ADS  CrossRef  Google Scholar 

  17. K. N. Ananda, S. Carloni and P. K. S. Dunsby, arXiv:0809.3673 [astro-ph].

    Google Scholar 

  18. [Planck Collaboration], arXiv:astro-ph/0604069.

    Google Scholar 

  19. see the webpage http://www.sdss.org/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore N. Ananda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ananda, K.N., Carloni, S., Dunsby, P.K.S. (2011). A characteristic signature of fourth order gravity. In: Odintsov, S., Sáez-Gómez, D., Xambó-Descamps, S. (eds) Cosmology, Quantum Vacuum and Zeta Functions. Springer Proceedings in Physics, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19760-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19760-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19759-8

  • Online ISBN: 978-3-642-19760-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)