Skip to main content

Hamilton–Jacobi Method and Gravitation

Part of the Springer Proceedings in Physics book series (SPPHY,volume 137)

Abstract

Studying the behaviour of a quantum field in a classical, curved, spacetime is an extraordinary task which nobody is able to take on at present time. Independently by the fact that such problem is not likely to be solved soon, still we possess the instruments to perform exact predictions in special, highly symmetric, conditions. Aim of the present contribution is to show how it is possible to extract quantitative information about a variety of physical phenomena in very general situations by virtue of the so-called Hamilton–Jacobi method. In particular, we shall prove the agreement of such semi-classical method with exact results of quantum field theoretic calculations.

Keywords

  • Black Hole
  • Jacobi Equation
  • Naked Singularity
  • Cosmological Horizon
  • Jacobi Method

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-19760-4_14
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-19760-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.K. Parikh and F. Wilczek, Phys. Rev. Lett. 85 (2000) 5042.

    MathSciNet  ADS  CrossRef  Google Scholar 

  2. M. Angheben, M. Nadalini, L. Vanzo and S. Zerbini, JHEP 05 (2005) 014.

    MathSciNet  ADS  CrossRef  Google Scholar 

  3. M. Nadalini, L. Vanzo and S. Zerbini, J. Physics A 39 (2006) 6601.

    MathSciNet  ADS  MATH  CrossRef  Google Scholar 

  4. R. Kerner and R.B. Mann, Phys. Rev. D 73 (2006) 104010.

    MathSciNet  ADS  CrossRef  Google Scholar 

  5. R. Di Criscienzo, M. Nadalini, L. Vanzo, S. Zerbini and G. Zoccatelli, Phys. Lett. B 657 (2007) 107.

    MathSciNet  ADS  CrossRef  Google Scholar 

  6. S. A. Hayward, R. Di Criscienzo, L. Vanzo, M. Nadalini and S. Zerbini, Class. Quant. Grav. 26 (2009) 062001.

    ADS  CrossRef  Google Scholar 

  7. S. A. Hayward, Class. Quant. Grav. 15 (1998) 3147.

    MathSciNet  ADS  MATH  CrossRef  Google Scholar 

  8. H. Kodama, Prog. Theor. Phys. 63 (1980) 1217.

    ADS  CrossRef  Google Scholar 

  9. R. Di Criscienzo, S.A. Hayward, M. Nadalini, L. Vanzo and S. Zerbini, Class. Quant. Grav. 27 (2010) 015006.

    ADS  CrossRef  Google Scholar 

  10. R. Di Criscienzo, L. Vanzo and S. Zerbini, JHEP 05 (2010) 092.

    CrossRef  Google Scholar 

  11. S. A. Hayward, Phys. Rev. D 49 (1994) 6467.

    MathSciNet  ADS  CrossRef  Google Scholar 

  12. G. E. Volovik, JETH Lett. 90, 1 (2009).

    ADS  CrossRef  Google Scholar 

  13. J. Bros, H. Epstein and U. Moschella, JCAP 0802 (2008) 003; J. Bros, H. Epstein and U. Moschella, arXiv:0812.3513; J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Commun. Math. Phys. 295 (2010) 261.

    Google Scholar 

  14. V. P. Frolov and I. D. Novikov, Black Hole Physics (Kluwer Academic Publishers, Dordrecht, 1998).

    Google Scholar 

  15. H. Iguchi and T. Harada, Class. Quant. Grav. 18 (2001) 3681; T. Harada et al., Phys. Rev. D 64 (2001) 041501.

    Google Scholar 

  16. C. Vaz and L. Witten, Phys. Lett. B 325 (1994) 27.

    MathSciNet  ADS  CrossRef  Google Scholar 

  17. L.H. Ford and L. Parker, Phys. Rev. D 17 (1978) 1485.

    MathSciNet  ADS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Di Criscienzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Criscienzo, R.D., Vanzo, L., Zerbini, S. (2011). Hamilton–Jacobi Method and Gravitation. In: Odintsov, S., Sáez-Gómez, D., Xambó-Descamps, S. (eds) Cosmology, Quantum Vacuum and Zeta Functions. Springer Proceedings in Physics, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19760-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19760-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19759-8

  • Online ISBN: 978-3-642-19760-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)