Skip to main content

An analysis of the phase space of Hořava-Lifshitz cosmologies

Part of the Springer Proceedings in Physics book series (SPPHY,volume 137)

Abstract

Using the dynamical system approach, properties of cosmological models based on the Hořava-Lifshitz gravity are systematically studied. A result of this investigation is that in the detailed balance case one of the attractors in the theory corresponds to the oscillatory behavior described by Brandenberger. Instead the cosmological models generated by Hořava-Lifshitz gravity without the detailed balance assumption have indeed the potential to describe the transition between the Friedmann and the dark energy eras. The whole analysis leads to the plausible conclusion that a cosmology compatible with the present observations of the universe can be achieved only if the detailed balance condition is broken.

Keywords

  • Dark Energy
  • Cosmological Model
  • Detailed Balance
  • Dynamical System Approach
  • Raychaudhuri Equation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-19760-4_12
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-19760-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hoˇrava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D 79, 084008 (2009) [arXiv:0901.3775 [hep-th]].

    Google Scholar 

  2. N. Afshordi, “Cuscuton and low energy limit of Hoˇrava-Lifshitz gravity,” arXiv:0907.5201 [hep-th].

    Google Scholar 

  3. C. Charmousis, G. Niz, A. Padilla and P. M. Saffin, “Strong coupling in Horava gravity,” JHEP 0908, 070 (2009) [arXiv:0905.2579 [hep-th]]. R. Iengo, J. G. Russo and M. Serone, “Renormalization group in Lifshitz-type theories,” arXiv:0906.3477 [hep-th]. C. Bogdanos and E. N. Saridakis, “Perturbative instabilities in Horava gravity,” arXiv:0907.1636 [hep-th]. R. G. Cai, B. Hu and H. B. Zhang, “Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity,” Phys. Rev. D 80, 041501 (2009) [arXiv:0905.0255 [hep-th]].

    Google Scholar 

  4. D. Blas, O. Pujolas and S. Sibiryakov, “On the Extra Mode and Inconsistency of Horava Gravity,” JHEP 0910 (2009) 029 [arXiv:0906.3046 [hep-th]].

    MathSciNet  ADS  CrossRef  Google Scholar 

  5. A. Kobakhidze, “On the infrared limit of Horava’s gravity with the global Hamiltonian constraint,” arXiv:0906.5401 [hep-th].

    Google Scholar 

  6. A. A. Kocharyan, “Is nonrelativistic gravity possible?,” Phys. Rev. D 80, 024026 (2009) [arXiv:0905.4204 [hep-th]]. 148 Sante Carloni, Emilio Elizalde and Pedro J Silva

    Google Scholar 

  7. S. Mukohyama, “Dark matter as integration constant in Hoˇrava-Lifshitz gravity,” arXiv:0905.3563 [hep-th].

    Google Scholar 

  8. D. Orlando and S. Reffert, “On the Perturbative Expansion around a Lifshitz Point,” Phys. Lett. B 683 (2010) 62 [arXiv:0908.4429 [hep-th]].

    MathSciNet  ADS  CrossRef  Google Scholar 

  9. M. Visser, “Lorentz symmetry breaking as a quantum field theory regulator,” Phys. Rev. D 80, 025011 (2009) [arXiv:0902.0590 [hep-th]].

    Google Scholar 

  10. E. Kiritsis and G. Kofinas, Nucl. Phys. B 821, 467 (2009) [arXiv:0904.1334 [hep-th]].

    Google Scholar 

  11. T. Takahashi and J. Soda, Phys. Rev. Lett. 102, 231301 (2009) [arXiv:0904.0554 [hep-th]].

    Google Scholar 

  12. T. P. Sotiriou, M. Visser and S. Weinfurtner, “Quantum gravity without Lorentz invariance,” JHEP 0910 (2009) 033 [arXiv:0905.2798 [hep-th]].

    MathSciNet  ADS  CrossRef  Google Scholar 

  13. T. P. Sotiriou, M. Visser and S. Weinfurtner, “Phenomenologically viable Lorentz-violating quantum gravity,” Phys. Rev. Lett. 102, 251601 (2009) [arXiv:0904.4464 [hep-th]].

    Google Scholar 

  14. H. Nastase, “On IR solutions in Hoˇrava gravity theories,” arXiv:0904.3604 [hep-th].

    Google Scholar 

  15. R. Brandenberger, “Matter Bounce in Horava-Lifshitz Cosmology,” Phys. Rev. D 80 (2009) 043516 [arXiv:0904.2835 [hep-th]].

    MathSciNet  ADS  CrossRef  Google Scholar 

  16. A. Wang and Y. Wu, “Thermodynamics and classification of cosmological models in the Horava-Lifshitz theory of gravity,” JCAP 0907, 012 (2009) [arXiv:0905.4117 [hep-th]].

    Google Scholar 

  17. G. Calcagni, “Cosmology of the Lifshitz universe,” JHEP 0909 (2009) 112 [arXiv:0904.0829 [hep-th]].

    MathSciNet  ADS  CrossRef  Google Scholar 

  18. Y. S. Piao, “Primordial perturbation in Hoˇrava-Lifshitz cosmology,” arXiv:0904.4117 [hepth].

    Google Scholar 

  19. M. i. Park, “A Test of Horava Gravity: The Dark Energy,” arXiv:0906.4275 [hep-th]; M. i. Park, “The Black Hole and Cosmological Solutions in IR modified Horava Gravity,” JHEP 0909 (2009) 123 [arXiv:0905.4480 [hep-th]].

    Google Scholar 

  20. C. Appignani, R. Casadio and S. Shankaranarayanan, “The Cosmological Constant and Horava-Lifshitz Gravity,” arXiv:0907.3121 [hep-th].

    Google Scholar 

  21. Y. F. Cai and E. N. Saridakis, “Non-singular cosmology in a model of non-relativistic gravity,” JCAP 0910 (2009) 020 [arXiv:0906.1789 [hep-th]].

    ADS  Google Scholar 

  22. A. Wang, D. Wands and R. Maartens, “Scalar field perturbations in Horava-Lifshitz cosmology,” arXiv:0909.5167 [hep-th].

    Google Scholar 

  23. A. Wang and R. Maartens, “Linear perturbations of cosmological models in the Horava-Lifshitz theory of gravity without detailed balance,” arXiv:0907.1748 [hep-th].

    Google Scholar 

  24. G. Leon and E. N. Saridakis, “Phase-space analysis of Horava-Lifshitz cosmology,” arXiv:0909.3571 [hep-th].

    Google Scholar 

  25. S. Carloni, E. Elizalde and P. J. Silva, Class. Quant. Grav. 27 (2010) 045004 [arXiv:0909.2219 [hep-th]].

    MathSciNet  ADS  CrossRef  Google Scholar 

  26. J. Wainwright and G. F. R. Ellis, Eds., Dynamical Systems in Cosmology (Cambridge: Cambridge Univ. Press, 1997), and references therein.

    Google Scholar 

  27. S. Carloni, P. K. S. Dunsby, S. Capozziello and A. Troisi, “Cosmological dynamics of Rn gravity,” Class. Quant. Grav. 22, 4839 (2005) [arXiv:gr-qc/0410046].

    Google Scholar 

  28. S. Carloni, A. Troisi and P. K. S. Dunsby, “Some remarks on the dynamical systems approach to fourth order gravity,” Gen. Rel. Grav. 41, 1757 (2009) [arXiv:0706.0452 [gr-qc]].

    Google Scholar 

  29. S. Carloni, S. Capozziello, J. A. Leach and P. K. S. Dunsby, “Cosmological dynamics of scalar-tensor gravity,” Class. Quant. Grav. 25, 035008 (2008) [arXiv:gr-qc/0701009].

    Google Scholar 

  30. M. Abdelwahab, S. Carloni and P. K. S. Dunsby, “Cosmological dynamics of exponential gravity,” Class. Quant. Grav. 25, 135002 (2008) [arXiv:0706.1375 [gr-qc]].

    Google Scholar 

  31. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964).

    Google Scholar 

  32. See, for example, S. Lefschetz, Differential Equations: Geometric Theory (Dover, New York, 1977)

    Google Scholar 

  33. C. Bogdanos and E. N. Saridakis, “Perturbative instabilities in Hoˇrava gravity,” arXiv:0907.1636 [hep-th].

    Google Scholar 

  34. C. Germani, A. Kehagias and K. Sfetsos, “Relativistic Quantum Gravity at a Lifshitz point,” arXiv:0906.1201 [hep-th].

    Google Scholar 

  35. S. Nojiri and S.D. Odintsov, “Covariant Hoˇrava-like renormalizable gravity and its FRW cosmology,” arXiv:0905.4213 [hep-th].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sante Carloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carloni, S., Elizalde, E., Silva, P.J. (2011). An analysis of the phase space of Hořava-Lifshitz cosmologies. In: Odintsov, S., Sáez-Gómez, D., Xambó-Descamps, S. (eds) Cosmology, Quantum Vacuum and Zeta Functions. Springer Proceedings in Physics, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19760-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19760-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19759-8

  • Online ISBN: 978-3-642-19760-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)