Skip to main content

Impulse-Based Dynamic Simulation of Deformable Biological Structures

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 6575))

Abstract

We present a new impulse-based method, called the Tethered Particle System (TPS), for the dynamic simulation of deformable biological structures. The TPS is unusual in that it may capture a gradual process of deformation using only instantaneous impulses that occur in response to particle collisions. This paper describes the method and its application to synaptic vesicle clusters and deformable biological membranes. Unlike many alternative methods, which require solutions to systems of equations or inequalities, the calculations in a TPS simulation are all analytic. The TPS also alleviates the need to choose regular time intervals appropriate for biological entities that may differ in size by orders of magnitude. The method is promising for simulations of small-scale self-assembling deformable biological structures exhibiting random motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baraff, D.: Analytical Methods for Dynamic Simulation of Non-penetrating Rigid Bodies. Computer Graphics 23(3), 223–232 (1989)

    Article  Google Scholar 

  2. Bender, J., Bayer, D.: Impulse-based simulation of inextensible cloth. In: Proceedings of The International Conference on Computer Graphics and Visualization (IADIS), Amsterdam, Netherlands (2008)

    Google Scholar 

  3. Brown, J., Sorkin, S., Bruyns, C., Latombe, J.-C., Stephanides, M., Montgomery, K.: Real-time simulation of deformable objects: Tools and application. Computer Animation, 228–236 (2001)

    Google Scholar 

  4. Camilli, P.D.: Keeping synapses up to speed. Nature 375, 450–451 (1995)

    Article  Google Scholar 

  5. Conti, F., Khatib, O., Baur, C.: Interactive rendering of deformable objects based on a filling sphere modeling approach. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan (2003)

    Google Scholar 

  6. Diziol, R., Bender, J., Bayer, D.: Volume Conserving Simulation of Deformable Bodies. In: Proceedings of Eurographics, Munich, Germany (2009)

    Google Scholar 

  7. Gibson, S.F.F., Mirtich, B.: A Survey of Deformable Modeling in Computer Graphics. Mitsubishi Electric Reasearch Laboratories (1997), www.merl.com

  8. Guess, T.M., Maletsky, L.P.: Computational modelling of a total knee prosthetic loaded in a dynamic knee simulator. Medical Engineering & Physics 27(5), 357–367 (2005)

    Article  Google Scholar 

  9. Jansson, J., Vergeest, J.S.M.: A discrete mechanics model for deformable bodies. Computer-Aided Design 34(12), 913–928 (2002)

    Article  Google Scholar 

  10. Keiser, R., Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Contact Handling for Deformable Point-Based Objects. In: Proceedings of the Vision, Modeling, and Visualization Conference (VMV), Stanford, CA, USA (2004)

    Google Scholar 

  11. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  12. Klein, M.L., Shinoda, W.: Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems. Science 321(5890), 798–800 (2008)

    Article  Google Scholar 

  13. Mirtich, B., Canny, J.: Impulse-based Simulation of Rigid Bodies. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics (SI3D), Monterey, California, United States (1995)

    Google Scholar 

  14. Mirtich, B.V.: Impulse-based Dynamic Simulation of Rigid Body Systems. PhD. University of California at Berkeley, Berkeley (1996)

    Google Scholar 

  15. Moore, M., Wilhelms, J.: Collision Detection and Response for Computer Animation. Computer Graphics 22(4), 289–298 (1988)

    Article  Google Scholar 

  16. Moore, P., Molloy, D.: A Survey of Computer-Based Deformable Models. In: Proceedings of the International Machine Vision and Image Processing Conference (IMVIP), Maynooth, Ireland (2007)

    Google Scholar 

  17. Südhof, T.C., Starke, K.: Pharmacology of Neurotransmitter Release. Springer, Heidelberg (2008)

    Book  Google Scholar 

  18. Tagawa, K., Hirota, K., Hirose, M.: Impulse Response Deformation Model: an Approach to Haptic Interaction with Dynamically Deformable Object. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS), Alexandria, VA, USA (2006)

    Google Scholar 

  19. Wang, T., Pan, T.W., Xing, Z.W., Glowinski, R.: Numerical simulation of rheology of red blood cell rouleaux in microchannels. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 79(4), 041916+ (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldstein, R., Wainer, G. (2011). Impulse-Based Dynamic Simulation of Deformable Biological Structures. In: Priami, C., Back, RJ., Petre, I., de Vink, E. (eds) Transactions on Computational Systems Biology XIII. Lecture Notes in Computer Science(), vol 6575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19748-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19748-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19747-5

  • Online ISBN: 978-3-642-19748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics