Robustness in Economic Development Studies: The Case of Tanzania

  • Willem Karel M. Brauers
  • Edmundas Kazimieras Zavadskas
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 648)

Abstract

The definition of robustness in econometrics, the error term in a linear equation, was not only broadened, but in addition moved from a cardinal to an ordinal-qualitative one: the most robust one, more robust than, as robust as……, robust, weak robust, less robust than, not robust. This interpretation is tested by an application on the Robustness in Economic Development, namely of Tanzania, while considering multiple objectives for development. For robustness the choice of the objectives has to be non-subjective, which is the case if all stakeholders are involved, and if all possible objectives are represented. Normalization has to be non-subjective too, which is possible by the use of a Multiplicative Form or of MOORA (Multi-Objective Optimization by Ratio Analysis). The last one is composed of ratio analysis “senso stricto” and of the Reference Point Method with the previously obtained ratios as a starting point. In this way, three different methods, controlling each other, form an additional guaranty for robustness.

Keywords

Full Multiplicative Form MOORA MULTIMOORA Robustness Stakeholders 

References

  1. Arrow K.J. (1974). General Economic Equilibrium: Purpose, Analytic Techniques, Collective Choice, American EconomicReview, 256.Google Scholar
  2. Brauers, W.K. (2008a). Group Decision Making With Multi-Objective Optimization, Foundations of Computing and DecisionSciences, Vol. 33, N ̊ 2, Poznan Technical University, 167–179.Google Scholar
  3. Brauers, W.K. (2008b). Multi-Objective Decision Making by Reference Point Theory for a Wellbeing Economy, OperationsResearch International Journal, 8, 89–104.Google Scholar
  4. Brauers W.K. (2007). What is meant by normalization in decision making? International Journal of Management and DecisionMaking, ISSN 1462–4621. 8, 5/6, 445–460.Google Scholar
  5. Brauers W.K. (2004). Optimization Methods for a Stakeholder Society. A Revolution in Economic Thinking by Multi-ObjectiveOptimization, ISBN 1–4020–7681–9, Kluwer Academic Publishers and Springer, Boston.Google Scholar
  6. Brauers W.K. (1995). Prévisions économiques à l’aide de la méthode entrées-sorties (Economic Forecasting assisted by the Input-Output Method) Economica, Paris.Google Scholar
  7. Brauers, W.K., E. K. Zavadskas, (2010). Is Robustness really Robust? Robustness from the Point of View of Statistics and Econometrics, Multiple Criteria Decision Aiding, Editors C. Zopounidis, M. Doumpos et al. ISNB 978–1–61668–231–6, NOVA Science Publishers, Chapter 2, 17–42.Google Scholar
  8. Brauers W. K., Ginevičious R. (2009). Robustness in Regional Development Studies. The Case of Lithuania, Journal of BusinessEconomics and Management, ISSN 1611–1699, 10(2), 121–140.Google Scholar
  9. Brauers W.K., Zavadskas E. K. (2006). The MOORA Method and its Application to Privatization in a Transition Economy, Control and Cybernetics, Systems Research Institute of the Polish Academy of Sciences, ISSN 0324–8569, 35, 2, 445–469.Google Scholar
  10. Brauers W.K., Lepkova N. (2003). The Application of the Nominal Group Technique to the Business Outlook of the Facilities Sector of Lithuania over the Period 2003–2012, International Journal of Strategic Property Management, Vol. 7, N ̊ 1, Vilnius, Gediminas Technical University, Lithuania and Napier University, Scotland, 1–9.Google Scholar
  11. Casella G., Berger R.L. (2002). Statistical Inference, Second Edition, Duxbury, Thomson Learning Pacific Grove, Ca, US.Google Scholar
  12. Churchman C.W., Ackoff R.L., Arnoff E.L. (1957). Introduction To Operations Research, Wiley, New York.Google Scholar
  13. Churchman C.W., Ackoff R.L. (1954). An Approximate Measure of Value, Operations Research, 2, 172–180.CrossRefGoogle Scholar
  14. Condorcet, M. (1785). Essai sur lapplication de lanalyse à la probabilité des décisions rendues à la pluralité des voix, Paris, l’Imprimerie royale.Google Scholar
  15. Gossen, H H. (1853). Entwicklung der Gesetze des Menschlichen Verkehrs und der daraus Flieszenden Regeln für Menschliches Handeln, 3 Auflage, Prager, Berlin, 1927.Google Scholar
  16. Hays W.L. (1974). Statistics for the Social Sciences, Holt, Rinehart and Winston, London.Google Scholar
  17. Hoel P.G. (1971). Elementary Statistics, Wiley, New York.Google Scholar
  18. Huber P.J. (1981). Robust Statistics, Wiley, New York.CrossRefGoogle Scholar
  19. Huber P.J. (1969). Theorie de lInférence Statistique Robuste, les Presses de l’Université de Montreal, Montreal.Google Scholar
  20. Hwang, C.-L., Yoon, K. (1981). Multiple Attribute Decision Making, Methods and Applications. Lecture Notes in Economics and Mathematical Systems, 186, Berlin, Springer.Google Scholar
  21. Hwang, C.-L., Masud A. S. Md. (1979). Multiple Objective Decision Making, Methods and Applications, Lecture Notes in Mathematical Systems, N ̊ 164, Berlin, Springer.Google Scholar
  22. Intriligator M.D. (1978). Econometric Models, Techniques and Applications, North Holland, Amsterdam.Google Scholar
  23. Karlin, S., Studden, W. J. (1966) Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience Publishers 278–280, New York.Google Scholar
  24. Kendall, M. G. (1948). Rank Correlation Methods, Griffin, London.Google Scholar
  25. Kendall, M. G.; Gibbons, J. D (1990) Rank Correlation Methods Edward Arnold, London.Google Scholar
  26. MacCrimmon, K.R. (1968). Decisionmaking among Multiple Attribute Alternatives. A Survey and Consolidated Approach, RM-4823-ARPA, the Rand Corporation, Santa Monica (CAL).Google Scholar
  27. Matyas L., Sevestre P. (1992). The Econometrics of Panel Data. Handbook of Theory and Applications, Advanced Studies in Theoretical and Applied Econometrics, Vol. 28, Kluwer Academic Publishers, Dordrecht.Google Scholar
  28. Miller, D.W., Starr, M.K. (1969). Executive Decisions and Operations Research, 2nd Edition, Prentice-Hall Inc. Englewood Cliffs (N.J.).Google Scholar
  29. Minkowsky, H. (1896). Geometrie Der Zahlen, Teubner, Leipzig.Google Scholar
  30. Minkowsky, H. (1911). Gesammelte Abhandlungen, Teubner, LeipzigGoogle Scholar
  31. Opricovic, S., Tzeng, G.-H. (2004). Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS, EJOR, 445–455.Google Scholar
  32. Pareto, V. (1906). Manuale di Economia Politica, Translation revised by Pareto Himself: Manuel déconomie politique, Second Ed., Paris (1927).Google Scholar
  33. Rieder H. Editor (1996). Robust Statistics, Data Analysis and Computer Intensive Methods, Springer, New York.Google Scholar
  34. Roy, B., Benayoun, R., Sussman, B. (1966). ELECTRE, Société d’Economie et de Mathématique appliquées, Paris.Google Scholar
  35. Ruggeri F. (2008). Bayesian Robustness, European Working Group, Multiple Criteria Decision Aiding, Series 3, 17, 6–10.Google Scholar
  36. Saaty, T. L. (1988). The Analytic Hierarchy Process. Mcgraw-Hill, New York.Google Scholar
  37. Soylu B. (2010). Integrating Promethee II with the Tchebycheff function for Multi Criteria Decision Making, International Journal of Information Technology and Decision Making, 9, 4, 525–545.CrossRefGoogle Scholar
  38. Thomas R.L. (1985). Introductory Econometrics, Longman, London.Google Scholar
  39. Wonnacott R.J., and T.H. (1970). Econometrics, Wiley, New York.Google Scholar
  40. Yang Y.-P. O., Shieh H.-M., Leu J.-D., Tzeng G.-H. (2009) A VIKOR-based Multiple Criteria Decision Method for improving information security risk, International Journal of Information Technology and Decision Making, 8, 2, 1–21.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Willem Karel M. Brauers
    • 1
  • Edmundas Kazimieras Zavadskas
    • 2
  1. 1.Faculty of Applied EconomicsUniversity of AntwerpAntwerpenBelgium
  2. 2.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations