Advertisement

Increased Trustability of Reliability Prognoses for Machine Tools

  • Gisela Lanza
  • Patrick Werner
  • Dominic Appel
  • Benjamin Behmann
Conference paper

Abstract

The estimation of trustable reliability figures for machine tools is a considerable challenge. The main reasons are the sparse availability of relevant components’ lifetime data as well as the load-dependence of reliability. The proposed paper presents a method to estimate increasingly trustable load-dependent reliability figures for machine tools using design information to estimate the reliability if no field data is given, service knowledge of an existing service department which monitors field maintenance of the products and documented field data of spare parts sales, service and maintenance activities.

Keywords

Load-Depended Reliability Model Trustability of Reliability Figures Confidence Bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Fleischer, J., Niggeschmidt, S., Wawerla, M. (2007): Machine Life Cyle Cost Estimation via Monte-Carlo Simulation, in: Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, Proceeding of the 14th CIRP Conference on Life Cycle Engineering, pp. 449–454, Wesada University, Tokyo, Japan, June 11th-13th.Google Scholar
  2. 2.
    Verein Deutscher Ingenieure (1986): VDI-Richtlinie 4004, Blatt 4, Zuverlässigkeitskenngrößen –Verfügbarkeitskenngrößen, Beuth, Berlin.Google Scholar
  3. 3.
    Niggeschmidt, S. (2010): Ausfallgerechte Ersatzteilbereitstellung im Maschinen- und Anlagenbau mittels lastabhängiger Lebensdauerprognosen, Fortschrittsberichte Band 155, wbk Institut für Produktionstechnik, Karlsruhe.Google Scholar
  4. 4.
    Fleischer, J., Niggeschmidt, S., Wawerla, M. (2007): Optimizing the Life-Cycle-Performance of Machine Tools by Reliability and Availability Prognosis, in: Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, Proceeding of the 14th CIRP Conference on Life Cycle Engineering, pp. 329–334, Waseda University, Tokyo, Japan, June 11th-13th.Google Scholar
  5. 5.
    Fleischer, J.; Weismann, U.; Nesges, D.; Wawerla, M. (2004): Life-Cycle-Performance in der Produktionstechnik, in: VDI-Z 146 10, pp. 87–90.Google Scholar
  6. 6.
    Birolini, A. (2004): Reliability Engineering – Theory and Practice, 4th ed., Springer Verlag, Berlin.Google Scholar
  7. 7.
    Nelson, W.B. (2003): Applied Life Data Analysis, Wiley- Interscience, New York.Google Scholar
  8. 8.
    Lanza, G., Werner, P., Niggeschmidt, S. (2009): Behavior of Dynamic Preventive Maintenance Optimization for Machine Tools, in: Proceeding of the Annual Reliability and Maintainability Symposium 2009, pp. 315 – 320, Fort Worth, Texas, USA.Google Scholar
  9. 9.
    Forschungskuratorium Maschinenbau (2003): Rechnerischer Festigkeitsnachweis für Maschinenbauteile aus Stahl, Eisenguss und Aluminiumwerkstoffen, 5. Aufl., VDMA Verlag GmbH, Frankfurt am Main.Google Scholar
  10. 10.
    Fleischer, J., Niggeschmidt, S., Werner, P. (2008): Application Oriented Approach for the Integration of Load Impacts in Reliability Analysis and Lifetime Prediction, in: International Applied Reliability Symposium 2008, Frankfurt, Germany, March 26th-28th.Google Scholar
  11. 11.
    DIN Deutsches Institut für Normung e.V. (2007): DIN ISO 281 Rolling bearings – Dynamic load ratings and rating life (ISO 281:2007), Beuth Verlag GmbH, Berlin.Google Scholar
  12. 12.
    Munzinger, C., Schopp, M., Hennrich, H. (2010): Increasing maintenance efficiency - A strategy regarding condition and load-based approaches for diagnosis and prognosis, in: Conference Proceedings of the 2nd CIRP Process Machine Interactions 2010, Vancouver, Canada, June 6th-10th.Google Scholar
  13. 13.
    Bertsche, B., Lechner, G. (2004): Zuverlässigkeit im Fahrzeug- und Maschinenbau: Ermittlung von Bauteil- und System-Zuverlässigkeiten, Springer Verlag, Berlin.Google Scholar
  14. 14.
    Jäger, P., Bertsche, B. (2004): A new approach to gathering failure behavior information about mechanical components based on expert knowledge. in: Annual Reliability and Maintainability Symposium 2004, pp. 90–95.Google Scholar
  15. 15.
    Abernethy, R. B. (2006): The New Weibull Handbook. 5. Auflage, Robert B. Abernethy Publishing, North Palm Beach, Florida.Google Scholar
  16. 16.
    Nau, D. (2004): Total Cost of Ownership (TCO) bei DaimlerChrysler, in Conference Proceedings of the Conference Life-Cycle-Performance in der Produktionstechnik 2004, Karlsruhe.Google Scholar
  17. 17.
    Quenouille, M. H. (1949): Approximate tests of correlation in time series, in: J. R. Statist. Soc. B11 (1949), pp. 18–84.MathSciNetGoogle Scholar
  18. 18.
    Kao, J.H.K. (1958): A New Life Quality Measure for Electron Tubes. IRE Transaction on Reliability and Quality Control, PGRQC 13, pp. 15–22.CrossRefGoogle Scholar
  19. 19.
    Lanza, G., Werner, P., Behmann, B. (2010): Prognosis of machine tool warranty costs considering arising risks through weak data sets and unknown load profiles, in: Conference Proceedings of the European Safety and Reliability Conference (ESREL 2010), pp. 1014–1018, Rhodes, Greece.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gisela Lanza
    • 1
  • Patrick Werner
    • 1
  • Dominic Appel
    • 1
  • Benjamin Behmann
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT), wbk Institute of Production ScienceKarlsruheGermany

Personalised recommendations