Advertisement

Concept and Development of Intelligent Production Control to enable Versatile Production in the Automotive Factories of the Future

  • Sarfraz Ul Haque Minhas
  • Christian Lehmann
  • Ulrich Berger
Conference paper

Abstract

The automotive industry is being confronted with numerous challenges among which the increased product customization, short product life cycles and faster time to market are inducing a lot of complexities in controlling the current production systems. Consequently, the production systems are incapable of handling changing product variety and volume in a productive way and often involve intensive redesigning and reconfiguration processes. This paper introduces the concept of versatile production setups, an intelligent approach for selecting appropriate resources and optimal parameter settings to enable fast changeability as well as for reducing quality assurance time to achieve productivity in production processes.

Keywords

Versatile Production Setups Plug and Produce Reconfigurability Ease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Molina A., Rodriguez C. A., Ahuett H., Cortés J. A, Ramirez M., Jiménez G., Martinez S. (2005): Next-generation manufacturing systems: key research issues in developing and integrating reconfigurable and intelligent machinesGoogle Scholar
  2. 2.
    International Journal of Computer Integrated Manufacturing, vol. 18, no. 7, pp. 525–536.Google Scholar
  3. 3.
    Gerwin D., Barrowman N. J. (2002): An evaluation of research on integrated product development, Management Science, vol. 48, no. 7, pp. 938–953.CrossRefGoogle Scholar
  4. 4.
    Mallick D. N., Schroeder R. G. (2005): An integrated framework for measuring product development performance in high technology industries, Production and Operations Management, vol. 2, no. 14, pp. 142–158.Google Scholar
  5. 5.
    Blecker T., Abdelkafi N., Kaluza B., Kreutler G. (2004): Mass customization vs. complexity: A Gordian Knot?, Proceedings of 2nd International Conference "An Enterprise Odyssey: Building Competitive Advantage" pp. 890–903Google Scholar
  6. 6.
    Salonitis K.,Pandremenos J.,Paralikas J., Chryssolourics G. (2009): Multifunctional Materials Used in Automotive Industry: A Critical Review, Engineering Against Fracture: Proceedings of the 1st Conference, Springer Science & Business Media B.V.Google Scholar
  7. 7.
    Goede M., Stehlin M., Rafflenbeul L., Kopp G., Beeh E. (2009): Super Light Car-lightweight construction thanks to a multi-material design and function integration, Journal of European Transport Research Review, vol. 1, no.1, pp.5-10.CrossRefGoogle Scholar
  8. 8.
    Christensen T. B. (2009): Integration of Environmental Technology in Modularized Production Systems in the Automotive Industry, Proceedings of Joint Action on Climate Changes conference.Google Scholar
  9. 9.
    Kuhn, A. (Editor), Wiendahl, H.-P., Eversheim, W., Schuh, G. (2002): Schneller Produktionsanlauf von Serienprodukten, Ergebnisbericht der Untersuchung (Fast Production startup from serial production, Findings from the investigation) "fast ramp-up", Dortmund: Verlag Praxiswissen.Google Scholar
  10. 10.
    Meichsner T. P. (2009): Migration Manufacturing – A New Concept for Automotive Body Production, Book Chapter in Changeable and Reconfigurable Manufacturing Systems, pp. 373–387.Google Scholar
  11. 11.
    Marinin K. J., Davis T. R.V. (2002): Modular assembly strategy in international automotive manufacturing, International Journal of Automotive Technology and Management, vol. 2, no. 3–4, pp. 353–362.CrossRefGoogle Scholar
  12. 12.
    Fredriksson P. (2002): Modular assembly in the car industry -an analysis of organizational forms’ influence on performance, European Journal of Purchasing & Supply Management, vol. 8, no. 4, pp. 221–233.CrossRefGoogle Scholar
  13. 13.
    Kirk S.,Tebaldi E. (1997): Design of robotic facilities for agile automobile manufacturing, Journal of Industrial Robot, vol. 24, no. 1, pp. 72–77.CrossRefGoogle Scholar
  14. 14.
    Wiendahl H.-P., ElMaraghy H.A., Nyhuis P., Zäh M.F., Wiendahl H.-H., Duffie N., Brieke M. (2007): Changeable Manufacturing - Classification, Design and Operation, CIRP Annals - Manufacturing Technology, vol. 56, no. 2, pp. 783-809.CrossRefGoogle Scholar
  15. 15.
    Cai, J., Weyrich, M., Berger, U. (2005): Ontological Machining Process Data Modelling for Powertrain Production in Extended Enterprise, Journal of Advanced Manufacturing System (JAMS), vol. 4, no. 1, pp. 69–82.CrossRefGoogle Scholar
  16. 16.
    Berger, U., Kretzschmann, R. (2007): Development of a holistic guidance system for the NC process chain for benchmarking machining operations, Proceedings of the 12th IEEE Conference on Emerging Technologies and Factory Automation.Google Scholar
  17. 17.
    Jungnickel D. (2008): Graphs, Networks and Algorithms, 3rd ed., Springer.Google Scholar
  18. 18.
    Hamelmann S. (1996): Systementwicklung zur Automatisierung der Arbeitsplanung (System development for the automation of work planning), Fortschriftberichte VDIReiheGoogle Scholar
  19. 19.
    20 Nr. 195, VDI Verlag Düsseldorf..Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sarfraz Ul Haque Minhas
    • 1
  • Christian Lehmann
    • 1
  • Ulrich Berger
    • 1
  1. 1.Chair of Automation TechnologyBrandenburgische Technische UniversitätCottbusGermany

Personalised recommendations