Advertisement

Recrystallization of a 2D Plasma Crystal

Chapter
  • 466 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

A phase transition in a complex plasma can be induced by several mechanisms, e.g. laser induced heating of the crystal [1, 2, 3, 4], changing of plasma parameters (pressure change, rf power changes) [5, 6, 7], or electric manipulation [8, 9]. Either a crystalline system can be melted and thus brought into a liquid or gaseous state, or the other direction, i.e. the recrystallization of a unordered system can be investigated. In any case, the process has to be observed at a high temporal resolution to obtain dynamical properties, and a good spatial resolution to derive the structural properties mentioned in the last chapter in theoretical models, and to compare them.

Keywords

Particle Temperature Pair Correlation Function Complex Plasma Linear Decay Defect Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Nosenko, J. Goree, A. Piel, Laser method of heating monolayer dusty plasmas. Phys. Plasmas 13, 032106 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Feng, J. Goree, B. Liu, Solid superheating observed in two-dimensional strongly coupled dusty plasma. Phys. Rev. Lett. 100, 205007 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Wolter, A. Melzer, Laser heating of particles in dusty plasmas. Phys. Rev. E 71, 036414 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    V. Nosenko, S.K. Zhdanov, A.V. Ivlev, C.A. Knapek, G.E. Morfill, 2D melting of plasma crystals: Equilibrium and nonequilibrium regimes. Phys. Rev. Lett. 103(1), 015001 (2009)Google Scholar
  5. 5.
    M. Thomas H., E. Morfill G., Melting dynamics of a plasma crystal. Nature 379, 806–809 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Quinn, J. Goree, Experimental test of two-dimensional melting through disclination unbinding. Phys. Rev. E 64, 051404 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    V.A. Schweigert, I.V. Schweigert, A. Melzer, A. Homann, A. Piel, Plasma crystal melting: A nonequilibrium phase transition. Phys. Rev. Lett. 80(24), 5345–5348 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    D. Samsonov, S.K. Zhdanov, R.A. Quinn, S.I. Popel, G.E. Morfill, Shock melting of a two-dimensional complex (dusty) plasma. Phys. Rev. Lett. 92(25), 255004 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    C.A. Knapek, D. Samsonov, S. Zhdanov, U. Konopka, G.E. Morfill, Recrystallization of a 2D plasma crystal. Phys. Rev. Lett. 98, 015004 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    B. Liu, J. Goree, V. Nosenko, L. Boufendi, Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma. Phys. Plasma 10(1), 9–20 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    U. Konopka, Wechselwirkungen geladener Staubteilchen in Hochfrequenzplasmen. PhD thesis, Fakultät für Physik und Astronomie der Ruhr-Universität-Bochum (2000)Google Scholar
  12. 12.
    S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee, Dispersion relations of longitudinal and transverse waves in two-dimensional screened Coulomb crystals. Phys. Rev. E 65, 066402–111 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee, K. Avinash, Phonon spectrum in a plasma crystal. Phys. Rev. Lett. 89(3), 035001 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    P.S. Epstein, On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23(6), 710–733 (1924)ADSCrossRefGoogle Scholar
  15. 15.
    L.V. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP 32(3), 493–500 (1971)MathSciNetADSGoogle Scholar
  16. 16.
    S.T. Chui, Grain-boundary theory of melting in two dimensions. Phys. Rev. Lett. 48(14), 933–935 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    V. Nosenko, S. Zhdanov, G. Morfill, Supersonic dislocations observed in a plasma crystal. Phys. Rev. Lett. 99, 025002 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    movie at http://www.mpe.mpg.de/\(\sim\) knapek/movies/index.htmlGoogle Scholar
  19. 19.
    D.R. Nelson, B. I. Halperin, Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    V. Nosenko, S.K. Zhdanov, Dynamic of dislocations in a 2D plasma crystal. Contrib. Plasma Phys. 49(4-5), 191–198 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    M. Rubin-Zuzic,G.E. Morfill,A.V. Ivlev, R. Pompl, B.A. Klumov, W. Bunk, H.M. Thomas, H. Rothermel, O. Havnes, A. Fouquet, Kinetic development of crystallization fronts in complex plasmas. Nat. Phys. 2, 181–185 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Frenkel, Kinetic Theory of Liquids. (Dover Publications, Inc, New York, 1955)Google Scholar
  23. 23.
    G.E. Morfill, A.V. Ivlev, Complex plasmas: An interdisciplinary research field. Rev. Mod. Phys. 81, 1353–1404 (2008)Google Scholar
  24. 24.
    R. Eötvös, Ueber den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molecularvolumen. Annalen der Physik und Chemie, 263(3), 448–459 (1886)ADSCrossRefGoogle Scholar
  25. 25.
    E.A. Guggenheim, The principle of corresponding states. J. Chem. Phys. 13(7), 253–261 (1945)ADSCrossRefGoogle Scholar
  26. 26.
    V.M. Bedanov, G. Gadiyak, On a modified Lindemann-like criterion for 2D melting. Phys. Lett. 109(6), 289–291 (1985)Google Scholar
  27. 27.
    X.H. Zheng, J.C. Earnshaw, On the Lindemann criterion in 2D. Europhys. Lett. 41(6), 635–640 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Max Planck Institute for Extraterrestrial PhysicsGarchingGermany

Personalised recommendations