Complex Plasmas

Part of the Springer Theses book series (Springer Theses)


An ionized gas containing ions, electrons and neutral atoms is called a plasma if it meets the conditions quasineutrality and collective behavior. The quasineutrality exists for distances much larger than the Debye length at which the potential caused by a charged particle has dropped to \(1/e\) due to the shielding by oppositely charged species. Collective behavior arises when one charged particle interacts with many other charged particles through the Coulomb force. This means much more than one particle has to remain within a Debye sphere. The motion of the constituents of a plasma should further be caused by electromagnetic interaction rather than direct particle collisions, requiring that the frequency of such collisions is much smaller than the plasma frequency—the frequency of typical plasma oscillations.


Dust Particle Debye Length Plasma Sheath Charge Fluctuation Interplanetary Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.F. Chen, Introduction to Plasma Physics and Controlled Fusion. Plasma Physics, vol. 1, Chap. 1.2 (Plenum Press, New York, 1984)Google Scholar
  2. 2.
    U. de Angelis, The physics of dusty plasmas. Phys. Scripta 45, 465–474 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    D.A. Mendis, A postencounter view of comets. Ann. Rev. Astron. Astrophys. 26, 11–49 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    C.K. Goertz, Dusty plasmas in the solar system. Rev. Geophys. 27(2), 271–292 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    O. Havnes,U. de Angelis, R. Bingham, C.K. Goertz, G.E. Morfill, V. Tsytovich, On the role of dust in the summer mesopause. J. Atmos. Terr. Phys. 52, 637–643 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    O. Havnes, T. Aslaksen, A. Brattli, Charged dust in the earth’s middle atmosphere. Phys. Scripta T 89, 133–137 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    C.K. Goertz, G. Morfill, A model for the formation of spokes in Saturn’s ring. Icarus 53, 219–229 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    E. Grün, G.E. Morfill, R.J. Terrile, T.V. Johnson, G. Schwehm, The evolution of spokes in Saturn’s b ring. Icarus 54, 227–252 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    G.E. Morfill, H.M. Thomas, Spoke formation under moving plasma clouds—The Goertz–Morfill model revisited. Icarus 179, 539–542 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    S.V. Vladimirov, K. Ostrikov, A.A. Samarian, Physics and Applications of Complex Plasmas. (Imperial College Press, London, 2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    A. Bouchoule, Technological Impacts of Dusty Plasmas. in Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, chap. 4, ed. by A. Bouchoule (Wiley, Chichester, 1999)Google Scholar
  12. 12.
    J. Winter, Dust: a new challenge in nuclear fusion research? Phys. Plasmas 7(10), 3862–3866 (2000)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sour. Sci. Technol. 12, 205–216 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    J. Perrin, J. Schmitt, C. Hollenstein, A. Howling, L. Sansonnens, The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells. Plasma Phys. Control Fusion 42, 353–363 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    E. Stoffels, W.W. Stoffels, H. Kersten, G.H.P.M. Swinkels, G.M.W. Kroesen, Surface processes of dust particles in lower pressure plasmas. Phys. Scripta. T 89, 168–172 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    V.E. Fortov, A.V. Ivles, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1–103 (2005)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A.P. Nefedov et al., PKE-Nefedov: plasma crystal experiments on the international space station. New. J. Phys. 5, 33.1–33.10 (2003)Google Scholar
  18. 18.
    H.M. Thomas, G.E. Morfill, V.E. Fortov, A.V. Ivlev, V.I. Molotkov, A.M. Lipaev, T. Hagl, H. Rothermel, S.A. Khrapak, R.K. Suetterlin, M. Rubin-Zuzic, M. Petrov, V.I. Tokarev, S.K. Krikalev, Complex plasma laboratory PK-3 plus on the international space station. New. J. Phys. 10, 033036 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Chu, I. Lin, Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009–4012 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett 73, 652–655 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Hayashi, S. Tachibana, Observation of Coulomb-crystal formation from carbon particles grown in a methane plasma. Jpn J. Appl. Phys. 33, L804–L806 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    A. Melzer, T. Trottenberg, A. Piel, Experimental determination of the charge on dust particles forming Coulomb lattices. Phys. Lett. A 191, 301–307 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    V.E. Fortov, A.P. Nefedov, V.M. Torchinskii, V.I. Molotkov, A.G. Khrapak, O.F. Petrov, K.F. Volykhin, Crystallization of a dusty plasma in the positive column of a glow discharge. JETP Lett. 64, 92–98 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    S. Mitić, B.A. Klumov, U. Konopka, M.H. Thoma, G.E. Morfill, Structural properties of complex plasmas in a homogenious discharge. Phys. Rev. Lett. 101, 125002 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    C.A. Murray, W.O. Sprenger, R.A. Wenk, Comparison of melting in three- and two-dimensions: microscopy of colloidal spheres. Phys. Rev. B 42(1), 688–703 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    D.G. Grier, C.A. Murray, The microscopic dynamics of freezing in supercooled colloidal fluids. J. Chem. Phys. 100(12), 9088–9095 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    M. Zuzic, H.M. Thomas, G.E. Morfill, Wave propagation and damping in plasma crystals. J. Vac. Sci. Technol. A 14(2), 496–500 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    J.B. Pieper, J. Goree, Dispersion of plasma dust accoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77(15), 3137–3140 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    A. Homann, A. Melzer, S. Peters, R. Madani, A. Piel, Laser-excited dust lattice waves in plasma crystals. Phys. Lett. A 242, 173–180 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee, Dispersion relations of longitudinal and transverse waves in two-dimensional screened Coulomb crystals. Phys. Rev. E 65, 066402/1–11 (2002)Google Scholar
  31. 31.
    G.E. Morfill, A.V. Ivlev, Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353–1404 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    D. Samsonov, A.V. Ivlev, R.A. Quinn, G. Morfill, S. Zhdanov, Dissipative longitudinal solitons in a two-dimensional strongly coupled compex (dusty) plasma. Phys. Rev. Lett. 88(9), 095004 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    V. Nosenko, S. Nunomura, J. Goree, Nonlinear compressional pulses in a 2D crystallized dusty plasma. Phys. Rev. Lett. 88(21), 215002 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    S.K. Zhdanov, D. Samsonov, G.E. Morfill, Anisotropic plasma crystal solitons. Phys. Rev. E 66, 026411 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    R. Heidemann, S. Zhdanov, R. Sütterlin, H.M. Thomas, G.E. Morfill, Dissipative dark soliton in a complex plasma. Phys. Rev. Lett. 102, 135002 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    D. Samsonov, S.K. Zhdanov, R.A. Quinn, S.I. Popel, G.E. Morfill, Shock melting of a two-dimensional complex (dusty) plasma. Phys. Rev. Lett. 92(25), 255004 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    D. Samsonov, J. Goree, Z.W. Ma, A. Bhattacharjee, H.M. Thomas, G.E. Morfill, Mach cones in a Coulomb lattice and a dusty plasma. Phys. Rev. Lett. 83(18), 3649–3652 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A.V. Milovanov, A. Ivlev, J.J. Rasmussen, G.E. Morfill, Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. Phys. Rev. Lett. 96, 105010 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    A.V. Ivlev, G.E. Morfill, H.M. Thomas, C. Räth, G. Joyce, P. Huber, R. Kompaneets, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, T. Reiter, M. Turin, P. Vinogradov, First observation of electrorheological plasmas. Phys. Rev. Lett. 100, 095003 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    H. Thomas, G.E. Morfill, Solid liquid gaseous phase transitions in plasma crystals. J. Vac. Sci. Technol. A 14(2), 501–505 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    R.T. Farouki, S. Hamaguchi, Phase transitions of dense systems of charged “dust” grains in plasmas. Appl. Phys. Lett. 61(25), 2973–2975 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    M. Rubin-Zuzic, G.E. Morfill, A.V. Ivlev, R. Pompl, B.A. Klumov, W. Bunk, H.M. Thomas, H. Rothermel, O. Havnes, A. Fouquet, Kinetic development of crystallization fronts in complex plasmas. Nat. Phys. 2, 181–185 (2006)CrossRefGoogle Scholar
  43. 43.
    A. Melzer, A. Homann, A. Piel, Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53(3), 2757–2766 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    R.A. Quinn, C. Cui, J. Goree, J.B. Pieper, H. Thomas, G.E. Morfill, Structural analysis of a coulomb lattice in a dusty plasma. Phys. Rev. E 53(3), R2049–R2052 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    C.A. Knapek, D. Samsonov, S. Zhdanov, U. Konopka, G.E. Morfill, Recrystallization of a 2D plasma crystal. Phys. Rev. Lett. 98, 015004 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    V. Nosenko, S.K. Zhdanov, A.V. Ivlev, C.A. Knapek, G.E. Morfill, 2D melting of plasma crystals: equilibrium and nonequilibrium regimes. Phys. Rev. Lett. 103(1), 015001 (2009)Google Scholar
  47. 47.
    J.E. Allen, Probe theory: the orbital motion approach. Phys. Scripta 45, 497–503 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    J.E. Allen, B.M. Annaratone, U. de Angelis, On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma. J. Plasma Phys. 63(4), 299–309 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    R.V. Kennedy, J.E. Allen, The floating potential of spherical probes and dust grains. II: Orbital motion theory. J. Plasma Phys. 69(6), 484–506 (2003)ADSGoogle Scholar
  50. 50.
    C. Cui, J. Goree, Fluctuations of the charge on a dust grain in a plasma. IEEE Trans. Plasma Sci. 22(2), 151–158 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    J.E. Daugherty, R.K. Porteous, M.D. Kilgore, D.B. Graves, Sheath structure around particles in low-pressure discharges. J. Appl. Phys. 72(9), 3934–3942 (1992)ADSCrossRefGoogle Scholar
  52. 52.
    S.A. Khrapak, A.V. Ivlev, G.E. Morfill, Momentum transfer in complex plasmas. Phys. Rev. E 70, 056405 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    J. Goree, Charging of particles in a plasma. Plasma Sour. Sci. Technol. 3, 400–406 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    S.A. Khrapak, S.V. Ratynskaia, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, O.F. Petrov, V.E. Fortov, Particle charge in the bulk of gas discharges. Phys. Rev. E 72, 016406 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    V.E. Fortov, A.P. Nefedov, O.S. Vaulina, A.M. Lipaev, V.I. Molotkov, A.A. Samaryan, V.P. Nikitskiiă , A. I. Ivanov, S.F. Savin, A.V. Kalmykov, A.Ya. Soloviev, P.V. Vinogradov, Dusty plasma induced by solar radiation under microgravitational conditions: an experiment on board the Mir orbiting space station. JETP 87(6), 1087–1097 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    B. Walch, M. Horanyi, S. Robertson, Charging of dust grains in plasma with energetic electrons. Phys. Rev. Lett. 75(5), 838–841 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    S. Hamaguchi, R.T. Farouki, Polarization force on a charged particulate in a nonuniform plasma. Phys. Rev. E 49, 4430–4441 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    J.P. Boeuf, C. Punset, Charging Time. in Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, Chap. 1.1.4, ed. by A. Bouchoule (Wiley, Chichester, 1999)Google Scholar
  59. 59.
    U. Konopka Wechselwirkungen geladener Staubteilchen in Hochfrequenzplasmen. PhD thesis, Fakultät für Physik und Astronomie der Ruhr-Universität-Bochum (2000)Google Scholar
  60. 60.
    T. Matsoukas, M. Russell, Particle charging in low-pressure plasmas. J. Appl. Phys. 77(9), 4285–4292 (1995)ADSCrossRefGoogle Scholar
  61. 61.
    U. Konopka, G.E. Morfill, L. Ratke, Measurement of the interaction potential of microspheres in the sheath of a rf discharge. Phys. Rev. Lett. 84, 891–894 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    M. Lampe, G. Joyce, G. Ganguli, Interactions between dust grains in a dusty plasma. Phys. Plasmas 7(10), 3851–3861 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    S.A. Khrapak, G.E. Morfill, Grain surface temperature in noble gas discharges: refined analytical model. Phys. Plasmas 13, 104506 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    A. Melzer, V.A. Schweigert, A. Piel, Transition from attractive to repulsive forces between dust molecules in a plasma sheath. Phys. Rev. Lett. 83(16), 3194–3197 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    J.P. Boeuf, C. Punset, Forces Acting on Dust Particles. in Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, chap. 1.2, ed. by A. Bouchoule (Wiley, Chichester, 1999)Google Scholar
  66. 66.
    J.E. Daugherty, R.K. Porteous, D.B. Graves, Electrostatic forces on small particles in low-pressure discharges. J. Appl. Phys. 73(4), 1617–1620 (1993)ADSCrossRefGoogle Scholar
  67. 67.
    S.A. Khrapak, A.V. Ivlev, G.E. Morfill, H.M. Thomas, Ion drag force in complex plasmas. Phys. Rev. E 66, 046414 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    V. Yaroshenko, S. Ratynskaia, S. Khrapak, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, Determination of the ion-drag force in a complex plasma. Phys. Plasmas 12, 093503 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    M. Chaudhuri, S.A. Khrapak, G.E. Morfill, Ion drag force on a small grain in highly collisional weakly anisotropic plasma: Effect of plasma production and loss mechanisms. Phys. Plasmas 15, 053703 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    S.A. Khrapak, G.E. Morfill, Basic processes in complex (dusty) plasmas: charging, interactions, and ion drag force. Contrib. Plasma Phys. 49(3), 148–168 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    P.S. Epstein, On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23(6), 710–733 (1924)ADSCrossRefGoogle Scholar
  72. 72.
    B. Liu, J. Goree, V. Nosenko, L. Boufendi, Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma. Phys. Plasma 10(1), 9–20 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    H. Rothermel, T. Hagl, G.E. Morfill, M.H. Thoma, H.M. Thomas, Gravity compensation in complex plasmas by application of a temperature gradient. Phys. Rev. Lett. 89(17), 175001 (2002)ADSCrossRefGoogle Scholar
  74. 74.
    S. Mitić, R. Sütterlin, A.V. Ivlev, H. Höfner, M.H. Thoma, S. Zhdanov, G.E. Morfill, Convective dust clouds driven by thermal creep in a complex plasma. Phys. Rev. Lett. 101, 235001 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    M. Schwabe, M. Rubin-Zuzic, S. Zhdanov, A.V. Ivlev, H.M. Thomas, G.E. Morfill, Formation of bubbles, blobs, and surface cusps in complex plasmas. Phys. Rev. Lett. 102(25), 255005 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    M. Rubin-Zuzic, H.M. Thomas, S.K. Zhdanov, G.E. Morfill, Circulation dynamo in complex plasma. New J. Phys. 9, 39 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    S. Hamaguchi, R.T. Farouki, D.H.E. Dubin, Triple point of Yukawa systems. Phys. Rev. E 56, 4671–4682 (1997)ADSCrossRefGoogle Scholar
  78. 78.
    H. Ikezi, Coulomb solid of small particles in plasmas. Phys. Fluids 29(6), 1764–1766 (1986)ADSCrossRefGoogle Scholar
  79. 79.
    K. Kremer, M.O. Robbins, G.S. Grest, Phase diagram of Yukawa systems: model for charge-stabilized colloids. Phys. Rev. Lett. 57(21), 2694–2697 (1986)ADSCrossRefGoogle Scholar
  80. 80.
    E.J. Meijer, D. Frenkel, Melting line of Yukawa system by computer simulation. J. Chem. Phys. 94(3), 2269–2271 (1990)ADSCrossRefGoogle Scholar
  81. 81.
    M.J. Stevens, M.O. Robbins, Melting of Yukawa systems: a test of phenomenological melting criteria. J. Chem. Phys. 98(3), 2319–2324 (1993)ADSCrossRefGoogle Scholar
  82. 82.
    S. Hamaguchi, R.T. Farouki, D.H.E. Dubin, Phase diagram of Yukawa systems near the one-component-plasma limit revisited. J. Chem. Phys. 105(17), 7641–7647 (1996)ADSCrossRefGoogle Scholar
  83. 83.
    O. Vaulina, S. Khrapak, G. Morfill, Universal scaling in complex (dusty) plasmas. Phys. Rev. E 66, 016404 (2002)ADSCrossRefGoogle Scholar
  84. 84.
    O.S. Vaulina, S.V. Vladimirov, O.F. Petrov, V.E. Fortov, Criteria of phase transitions in a complex plasma. Phys. Rev. Lett. 88(24), 245002 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Max Planck Institute for Extraterrestrial PhysicsGarchingGermany

Personalised recommendations