Advertisement

A Novel Method to Prevent Control System Instability Based on a Soft Computing Knowledge System

  • José Luis Calvo-Rolle
  • Emilio Corchado
  • Ramón Ferreiro
  • Amer Laham
  • Ma Araceli Sánchez
  • Ana Gil
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 87)

Abstract

The aim of this study is to present a novel soft computing method to assure PID tuning parameters place the system into a stable region by applying the gain scheduling method. First the system is identified for each significant operation point. Then using transfer functions solid structures of stability are calculated to program artificial neural networks, whose object is to prevent system from transitioning to instability. The method is verified empirically under a data set obtained by a pilot plant.

Keywords

KBS Robust stability artificial neural networks soft computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calvo-Rolle, J.L., Alonso-Alvarez, A., Ferreiro-Garcia, R.: Using Knowledge Engineering in a PID Regulator in Non Linear Process Control. Ingenieria Quimica 32, 21–28 (2007)Google Scholar
  2. 2.
    Bing, C., Xiaoping, L., Kefu, L., Peng, S., Chong, L.: Direct adaptive fuzzy control for nonlinear systems with time-varying delays. Information Sciences 180(5), 776–792 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Karimi, B., Menhaj, M.B.: Non-affine nonlinear adaptive control of decentralized large-scale systems using neural networks. Information Sciences 180(17), 3335–3347 (2010)zbMATHCrossRefGoogle Scholar
  4. 4.
    Astrom, K.J., Hagglund, T.: Advanced PID Control. Pearson Education, Madrid (2009)Google Scholar
  5. 5.
    Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison Wesley Publis. Company, Reading (1989)Google Scholar
  6. 6.
    Mademlis, C., Kioskeridis, I.: Gain-Scheduling Regulator for High-Performance Position Control of Switched Reluctance Motor Drives. IEEE Transactions on Industrial Electronics 57(9), 2922–2931 (2010)CrossRefGoogle Scholar
  7. 7.
    Kabbaj, N., Nakkabi, Y., Doncescu, A.: Analytical and knowledge based approaches for a bioprocess supervision. Knowledge-Based Systems 23, 116–124 (2010)CrossRefGoogle Scholar
  8. 8.
    Bishop, C.M.: Neural Networks for Pattern Recognition, Oxford (1995)Google Scholar
  9. 9.
    Baruque, B., Corchado, E.: A weighted voting summarization of SOM ensembles. Data Mining and Knowledge Discovery 21(3), 398–426 (2010)CrossRefGoogle Scholar
  10. 10.
    Graupe, D.: Principles of artificial neural networks, 2nd edn. World Sci. Publishing Co., Singapore (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gaston, R., Safonov, M.: Exact calculation of the multiloop stability margin. IEEE Transactions on Automatic Control 33, 156–171 (1988)zbMATHCrossRefGoogle Scholar
  12. 12.
    Canale, M., Fiorio, G., Malan, S., Taragna, M.: Robust tuning of low order controllers via uncertainty model identification. European J. of Control 5(2), 316–328 (1999)zbMATHGoogle Scholar
  13. 13.
    Astrom, K.J., Hagglund, T.: Revisiting the Ziegler–Nichols tuning rules for PID control. Asian Journal of Control 4(4), 364–380 (2002)Google Scholar
  14. 14.
    Ljung, L.: System Identification - Theory For the User, 2nd edn. PTR Prent. Hall, N.J (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José Luis Calvo-Rolle
    • 1
  • Emilio Corchado
    • 2
  • Ramón Ferreiro
    • 1
  • Amer Laham
    • 2
  • Ma Araceli Sánchez
    • 2
  • Ana Gil
    • 2
  1. 1.Department of Industrial EngineeringUniversity of CoruñaFerrolSpain
  2. 2.Departmento de Informática y AutomáticaUniversity of SalamancaSalamancaSpain

Personalised recommendations