Advertisement

Analyzing Gene Expression Data on a 3D Scatter Plot

  • Carlos Armando García
  • José A. Castellanos-Garzón
  • Carlos González Blanco
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 87)

Abstract

This paper proposes a visual approach based on a 3D scatter plot, which is applied to DNA microarray data cluster analysis. To do that, an algorithm of computing boundary genes of a cluster is presented. After applying this algorithm, it is possible to build 3D cluster surfaces. On the other hand, gene clusters on the scatter plot can be visually validated with a reference partition of the used data set. The experiments showed that this approach can be useful in DNA microarray cluster analysis.

Keywords

Boundary Point Surface Reconstruction Cluster Surface Cluster Boundary Current Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  2. 2.
    Boissonnat, J.D., Teillaud, M.: Mathematics and Visualization. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Castellanos-Garzón, J.A., García, C.A., Quintales, L.A.M.: An evolutionary hierarchical clustering method with a visual validation tool. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 367–374. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chan, Z.S.H., Kasabov, N.: Gene trajectory clustering with a hybrid genetic algorithm and expectation maximization method. In: IEEE International Joint Conference on Neural Networks, vol. 3, pp. 1669–1674 (2004)Google Scholar
  5. 5.
    Corchado, E., Herrera, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.07.002Google Scholar
  6. 6.
    Geoffrey, J.M., Do, K.A., Ambroise, C.: Analyzing Microarray Gene Expression Data. John Wiley & Sons, Inc., Hoboken (2004)zbMATHGoogle Scholar
  7. 7.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier Inc., Amsterdam (2006)Google Scholar
  8. 8.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH 1992: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78. ACM, New York (1992), http://doi.acm.org/10.1145/133994.134011 CrossRefGoogle Scholar
  9. 9.
    Jain, A.K., Murty, N.M., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  10. 10.
    Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: A survey. IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–1386 (2004)CrossRefGoogle Scholar
  11. 11.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  12. 12.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Clustering Analysis. John Wiley & Sons, Inc., Hoboken (2005)Google Scholar
  13. 13.
    Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. In: Proc. ACM SIGMOD, pp. 201–212 (2000)Google Scholar
  14. 14.
    Krantz, S.G., Saltman, D., Sallinger, D., Stern, R.: Metric Spaces. Library of Congress Cataloging-in-Publication Data (1964)Google Scholar
  15. 15.
    Marić, M., Marić, F., Mijajlović, Z., Jovanović, B.: Automatic construction of surface model. Tech. rep., School of Mathematics, University of Belgrade, Belgrade, Serbia and Montenegro (2005)Google Scholar
  16. 16.
    Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  17. 17.
    Pal, S.K., Bandyopadhyay, S., Murthy, C.A.: Evolutionary computation in bioinformatics: A review. IEEE Transactions on Systems, Man and Cybernerics, Part C 36, 601–615 (2006)CrossRefGoogle Scholar
  18. 18.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17, 103–115 (2010)Google Scholar
  19. 19.
    Simmons, G.F.: Introduction to Topology and Modern analysis. Mcgra W-H1Ll Book Company, Inc. (1963)Google Scholar
  20. 20.
    Tao, Y., Papadias, D., Lian, X.: Reverse KNN search in arbitrary dimensionality. In: Proc. Int’l Conf. Very Large Data Bases, pp. 744–755 (2004)Google Scholar
  21. 21.
    Thomas, J., Cook, K.: A visual analytics agenda. Computer Graphics and Applications. IEEE 26(1), 10–13 (2006), doi:10.1109/MCG.2006.5Google Scholar
  22. 22.
    Aigner, W., Bertone, A., Miksch, S.: Tutorial: Introduction to visual analytics. In: Holzinger, A. (ed.) USAB 2007. LNCS, vol. 4799, pp. 453–456. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Xia, C., Hsu, W., Lee, M.L., Ooi, B.C.: Border: Efficient computation of boundary points. IEEE Transactions on Knowledge and Data Engineering 18, 289–303 (2006)CrossRefGoogle Scholar
  24. 24.
    Yee-Yeung, K.: Clustering analysis of gene expression data. PhD thesis, University of Washintong (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Armando García
    • 1
  • José A. Castellanos-Garzón
    • 1
  • Carlos González Blanco
    • 2
  1. 1.Department of Computer Science and Automatics, Faculty of ScienceUniversity of SalamancaSpain
  2. 2.CGB InformáticaSpain

Personalised recommendations