Advertisement

Automatic Detection of White Grapes in Natural Environment Using Image Processing

  • Manuel Cabral Reis
  • Raul Morais
  • Carlos Pereira
  • Salviano Soares
  • A. Valente
  • J. Baptista
  • Paulo J. S. G. Ferreira
  • J. B. Cruz
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 87)

Abstract

The rate of adoption of Precision Agriculture and Precision Viticulture production systems in the Douro Demarcated Region remains low. We believe that one way to raise it is to address challenging real-world problems whose solution offers a clear benefit to the viticulturist. For example, one of the most demanding tasks in wine making is harvesting. Even for humans, the detection of grapes in their natural environment is not always easy. White grapes are particularly difficult to detect, since their color is similar to that of the leafs. Here we present a low cost system for the detection of white grapes in natural environment color images. The system also calculates the probable location of the bunch stem and achieves 91% of correct classifications.

Keywords

White grape detection visual inspection image processing precision viticulture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chamelat, R., Rosso, E., Choksuriwong, A., Rosenberger, C., Laurent, H., Bro, P.: Grape detection by image processing. In: IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, vol. 1, pp. 3521–3526 (2006)Google Scholar
  2. 2.
    Choksuriwong, A., Laurent, H., Emile, B.: Comparison of invariant descriptors for object recognition. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 1, pp. 377–80 (2005)Google Scholar
  3. 3.
    Corchado, E., Arroyo, Á., Tricio, V.: Soft computing models to identify typical meteorological days. Logic Journal of thel IGPL (2010)Google Scholar
  4. 4.
    Cunha, C.R., Peres, E., Morais, R., Oliveira, A.A., Matos, S.G., Fernandes, M.A., Ferreira, P., Reis, M.: The use of mobile devices with multitag technologies for an overall contextualized vineyard management. Computers and Electronics in Agriculture 73(3), 154–164 (2010)Google Scholar
  5. 5.
    Department of Energy: Assessment study on sensors and automation in the industries of the future :reports on industrial controls, information processing, automation, and robotics. Tech. rep., U.S. Department of Energy, Energy Efficiency and Renewable Energy, Industrial Technologies Program (2004)Google Scholar
  6. 6.
    Edan, Y., Miles, G.E.: Systems engineering of agricultural robot design. IEEE Transactions on Systems, Man and Cybernetics 24(8), 1259–1264 (1994)CrossRefGoogle Scholar
  7. 7.
    Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  8. 8.
    Jimenez, A., Jain, A., Ceres, R., Pons, J.: Automatic fruit recognition: A survey and new results using range/attenuation images. Pattern Recognition 32, 1719–1736 (1999)CrossRefGoogle Scholar
  9. 9.
    Lopes, M.S., Mendonca, D., dos Santos, M.R., Eiras-Dias, J.E., da Machado, A.C.: New insights on the genetic basis of Portuguese grapevine and on grapevine domestication. Genome 52(9), 790–800 (2009)CrossRefGoogle Scholar
  10. 10.
    Morais, R., Fernandes, M., Matos, S., Serôdio, C., Ferreira, P.J.S.G., Reis, M.J.C.S.: A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture 62(2), 94–106 (2008)CrossRefGoogle Scholar
  11. 11.
    Morais, R., Matos, S., Fernandes, M., Valente, A., Soares, S., Ferreira, P., Reis, M.: Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and Electronics in Agriculture 64(2), 120–132 (2008)Google Scholar
  12. 12.
    Rosenberger, C., Emile, B., Laurent, H.: Calibration and quality control of cherries by artificial vision. International Journal of Electronic Imaging, Special issue on quality control by artificial vision 13(3), 539–546 (2004)Google Scholar
  13. 13.
    Sarig, Y.: Robotics of fruit harvesting: A state-of-the-art review. Journal of Agricultural Engineering Research 54, 265–280 (1993)CrossRefGoogle Scholar
  14. 14.
    Sauvage, F.X., Bach, B., Moutounet, M., Vernhet, A.: Proteins in white wines: Thermosensitivity and differential adsorbtion by bentonite. Food Chemistry 118(1), 26–34 (2010)Google Scholar
  15. 15.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)Google Scholar
  16. 16.
    Tongrod, N., Tuantranont, A., Kerdcharoen, T.: Adoption of precision agriculture in vineyard. In: ECTI-CON: 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. 1&2, pp. 695–698 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuel Cabral Reis
    • 1
  • Raul Morais
    • 2
  • Carlos Pereira
    • 3
  • Salviano Soares
    • 1
  • A. Valente
    • 1
  • J. Baptista
    • 3
  • Paulo J. S. G. Ferreira
    • 4
  • J. B. Cruz
    • 3
  1. 1.Engineering DepartmentIEETA/UTADVila RealPortugal
  2. 2.Engineering DepartmentCITAB/UTADVila RealPortugal
  3. 3.Engineering DepartmentUTADVila RealPortugal
  4. 4.IEETAAveiroPortugal

Personalised recommendations