Advertisement

Austenitic Stainless Steel EN 1.4404 Corrosion Detection Using Classification Techniques

  • M. J. Jiménez-Come
  • E. Muñoz
  • R. García
  • V. Matres
  • M. L. Martín
  • F. Trujillo
  • I. Turias
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 87)

Abstract

Different methods of classification have been used in this paper to model pitting corrosion behaviour of austenitic stainless steel EN 1.4404. This material was subjected to electrochemical polarization tests in aqueous environment of varying chloride ion concentration (from NaCl solutions), pH values and temperature in order to determine values of critical pitting potentials (Epit) for each condition tested. In this way, the classification methods employed try to simulate the relation between Epit and those various environmental parameters studied. Different techniques have been used: Classification Trees (CT), Discriminant Analysis (DA), K-Nearest-Neighbours (K-NN), Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). These models have generally been regarded as successful. They have been able to give a good correlation between experimental and predicted data. The analysis of the results becomes useful to plan improvement in the austenitic stainless steel protection and to avoid critical conditions expositures of this material.

Keywords

austenitic stainless steel pitting corrosion classification methods SVM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sedriks, A.J.: Corrosion of Stainless Steel. John Wiley and Sons, West Sussex (1996)Google Scholar
  2. 2.
    Fossati, A., Borgioli, F., Galvanetto, E., Bacci, T.: Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions. Corrosion Science 48(6), 1513–1527 (1996), doi:10.1016/j.corsci.2005.06.006CrossRefGoogle Scholar
  3. 3.
    Pardo, A., Merino, M.C., Botella, J., Carbonera, M., Matres, V., Viejo, F., Arrabal, R.: Corrosion of AISI 326 Stainless Steel containing Cu and Sn in acid medio. Corrosion Engineering Science and Technology 41, 122–129 (2006)CrossRefGoogle Scholar
  4. 4.
    Wei, Y., Yaxiu, L.: Fourth International Conference on Natural Computation Predicting the Corrosion Rates of Steels in Sea Water Using Artificial Neural Network (2008), doi:10.1109/ICNC.2008.481Google Scholar
  5. 5.
    Pohjanne, P., Carpén, L., Hakkarainen, T., Kinnunen, P.: A method to predict pitting corrosion of stainless steels in evaporative conditions. Journal of Constructional Steel Research 64(11), 1325–1331 (2008), doi:10.1016/j.jcsr.2008.07.001CrossRefGoogle Scholar
  6. 6.
    Kamrunnahar, M., Urquidi-Macdonald, M.: Prediction of corrosion behavior using neural network as a data mining tool. Corrosion Science 52, 669–677 (2010), doi:10.1016/j.corsci.2010.11.028CrossRefGoogle Scholar
  7. 7.
    Cottis, R.A., Qing, L., Owen, G., Gartland, S.J., Helliwell, I.A., Turega, M.: Neural network methods for corrosion data reduction. Materials and Design 20(4), 169–178 (1999), doi:10.1016/S0261-3069(99)00026-6CrossRefGoogle Scholar
  8. 8.
    Merello, R., Botana, F.J., Botella, J., Matres, M.V., Marcos, M.: Influence of Chemical composition on the pitting corrosion resistance of non-standard low Ni high Mn-N du-plex stainless steels. Corrosion Science 45(5), 909–921 (2003), doi:10.1016/S0010-938X(02)00154-3CrossRefGoogle Scholar
  9. 9.
    Alfonsson, E., Quarfort, R.: Investigation of the applicability of some PRE expression for austenitic stainless steels. Avesta Corrosion Management 1, 1–5 (1992)Google Scholar
  10. 10.
    Corchado, E., Herrero, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.07.002Google Scholar
  11. 11.
    Sedano, J., Curiel, L., Corchado, E., Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2009)Google Scholar
  12. 12.
    Corchado, E., Arroyo, A., Tricio, V.: Soft computing models to identify typical me-teorological days. Logic Journal of thel IGPL (2010), doi:10.1093/jigpal/jzq035Google Scholar
  13. 13.
    Michael, T., Wicker, B., Wicker, L.: Handbook of applied Multivariate Statistics and Mathematical Modeling. In: Discriminant Analysis. Academic Press, London (2000)Google Scholar
  14. 14.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)zbMATHGoogle Scholar
  15. 15.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by error propagation. In: Parallel distributed processing: explorations in the microstructures of cognition, vol. I. MIT Press, Cambridge (1986)Google Scholar
  16. 16.
    Levenberg, K.: A Method for the Solution of Certain Non-linear Problems in Least Squares. The Quarterly of Applied Mathematics 2, 164–168 (1944)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Marquardt, D.: An Algorithm for Least-Squares Estimation of Non-linear Parameters. SIAM Journal of Applied Mathematics 11, 431–441 (1963), doi:10.1137/0111030MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cortes, C., Vapnik, V.: Support Vector Machines. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  19. 19.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)Google Scholar
  20. 20.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A statistical Approach, 1st edn. Prentice-Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. J. Jiménez-Come
    • 1
    • 5
  • E. Muñoz
    • 2
    • 5
  • R. García
    • 3
  • V. Matres
    • 3
  • M. L. Martín
    • 4
    • 5
  • F. Trujillo
    • 4
    • 5
  • I. Turias
  1. 1.Department of Civil and Industrial EngineeringSpain
  2. 2.Industrial Technologies Research InstituteSpain
  3. 3.ACERINOX, S.A. Polígono Industrial Palmones 11379, Los Barrios (Cádiz)Spain
  4. 4.Department of Chemical EngineeringSpain
  5. 5.Department of Computer Science Polytechnic School of Engineering (Algeciras)University of CádizAlgecirasSpain

Personalised recommendations