Skip to main content

Abstract

Different methods of classification have been used in this paper to model pitting corrosion behaviour of austenitic stainless steel EN 1.4404. This material was subjected to electrochemical polarization tests in aqueous environment of varying chloride ion concentration (from NaCl solutions), pH values and temperature in order to determine values of critical pitting potentials (Epit) for each condition tested. In this way, the classification methods employed try to simulate the relation between Epit and those various environmental parameters studied. Different techniques have been used: Classification Trees (CT), Discriminant Analysis (DA), K-Nearest-Neighbours (K-NN), Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). These models have generally been regarded as successful. They have been able to give a good correlation between experimental and predicted data. The analysis of the results becomes useful to plan improvement in the austenitic stainless steel protection and to avoid critical conditions expositures of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sedriks, A.J.: Corrosion of Stainless Steel. John Wiley and Sons, West Sussex (1996)

    Google Scholar 

  2. Fossati, A., Borgioli, F., Galvanetto, E., Bacci, T.: Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions. Corrosion Science 48(6), 1513–1527 (1996), doi:10.1016/j.corsci.2005.06.006

    Article  Google Scholar 

  3. Pardo, A., Merino, M.C., Botella, J., Carbonera, M., Matres, V., Viejo, F., Arrabal, R.: Corrosion of AISI 326 Stainless Steel containing Cu and Sn in acid medio. Corrosion Engineering Science and Technology 41, 122–129 (2006)

    Article  Google Scholar 

  4. Wei, Y., Yaxiu, L.: Fourth International Conference on Natural Computation Predicting the Corrosion Rates of Steels in Sea Water Using Artificial Neural Network (2008), doi:10.1109/ICNC.2008.481

    Google Scholar 

  5. Pohjanne, P., Carpén, L., Hakkarainen, T., Kinnunen, P.: A method to predict pitting corrosion of stainless steels in evaporative conditions. Journal of Constructional Steel Research 64(11), 1325–1331 (2008), doi:10.1016/j.jcsr.2008.07.001

    Article  Google Scholar 

  6. Kamrunnahar, M., Urquidi-Macdonald, M.: Prediction of corrosion behavior using neural network as a data mining tool. Corrosion Science 52, 669–677 (2010), doi:10.1016/j.corsci.2010.11.028

    Article  Google Scholar 

  7. Cottis, R.A., Qing, L., Owen, G., Gartland, S.J., Helliwell, I.A., Turega, M.: Neural network methods for corrosion data reduction. Materials and Design 20(4), 169–178 (1999), doi:10.1016/S0261-3069(99)00026-6

    Article  Google Scholar 

  8. Merello, R., Botana, F.J., Botella, J., Matres, M.V., Marcos, M.: Influence of Chemical composition on the pitting corrosion resistance of non-standard low Ni high Mn-N du-plex stainless steels. Corrosion Science 45(5), 909–921 (2003), doi:10.1016/S0010-938X(02)00154-3

    Article  Google Scholar 

  9. Alfonsson, E., Quarfort, R.: Investigation of the applicability of some PRE expression for austenitic stainless steels. Avesta Corrosion Management 1, 1–5 (1992)

    Google Scholar 

  10. Corchado, E., Herrero, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.07.002

    Google Scholar 

  11. Sedano, J., Curiel, L., Corchado, E., Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2009)

    Google Scholar 

  12. Corchado, E., Arroyo, A., Tricio, V.: Soft computing models to identify typical me-teorological days. Logic Journal of thel IGPL (2010), doi:10.1093/jigpal/jzq035

    Google Scholar 

  13. Michael, T., Wicker, B., Wicker, L.: Handbook of applied Multivariate Statistics and Mathematical Modeling. In: Discriminant Analysis. Academic Press, London (2000)

    Google Scholar 

  14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by error propagation. In: Parallel distributed processing: explorations in the microstructures of cognition, vol. I. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Levenberg, K.: A Method for the Solution of Certain Non-linear Problems in Least Squares. The Quarterly of Applied Mathematics 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  17. Marquardt, D.: An Algorithm for Least-Squares Estimation of Non-linear Parameters. SIAM Journal of Applied Mathematics 11, 431–441 (1963), doi:10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  18. Cortes, C., Vapnik, V.: Support Vector Machines. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  19. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  20. Devijver, P.A., Kittler, J.: Pattern Recognition: A statistical Approach, 1st edn. Prentice-Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez-Come, M.J. et al. (2011). Austenitic Stainless Steel EN 1.4404 Corrosion Detection Using Classification Techniques. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Advances in Intelligent and Soft Computing, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19644-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19644-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19643-0

  • Online ISBN: 978-3-642-19644-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics