Skip to main content

STRENGTH OF GEOMATERIALS: MULTISCALE THEORIES AND EXPERIMENTS AT APPROPRIATE PROBLEM-DEPENDENT LENGTH SCALES

  • Conference paper

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Summary

Quantification of the strength of geomaterials is often the key to effective solutions to problems in geoengineering. The scales where underlying processes are favorably studied and quantified may largely vary. We here consider two quite distinct cases, related to penetration resistance of gravel under rockfall, and to chemically driven strength growth in sprayed concrete (shotcrete), together with corresponding large-scale applications: rockfall protection of oil pipelines and tunneling according to the New Austrian Tunneling Method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forrestal, M.J., Altman, B.S., Cargile, S.J., Hanchak, S.J.: An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. International Journal of Impact Engineering 15(4), 395–405 (1994)

    Article  Google Scholar 

  2. Forrestal, M.J., Frew, D.J., Hanchak, S.J., Brar, N.S.: Penetration of grout and concrete targets with ogive-nose steel projectiles. International Journal of Impact Engineering 18(5), 465–476 (1996)

    Article  Google Scholar 

  3. Li, Q.M., Chen, X.W.: Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile. International Journal of Impact Engineering 28(1), 93–116 (2003)

    Article  Google Scholar 

  4. Pichler, B., Hellmich, C., Mang, H.A., Eberhardsteiner, J.: Loading of a gravel-buried steel pipe subjected to rockfall. Journal of Geotechnical and Geoenvironmental Engineering 132(11), 1465–1473 (2006)

    Article  Google Scholar 

  5. Pichler, B., Hellmich, C., Mang, H.A.: Impact of rocks onto gravel design and evaluation of experiments. International Journal of Impact Engineering 31(5), 559–578 (2005)

    Article  Google Scholar 

  6. Pichler, B., Hellmich, C., Eberhardsteiner, J., Mang, H.A.: Semi-probabilistic design of rockfall protection layers. Computational Mechanics 42(2), 327–336 (2008)

    Article  MATH  Google Scholar 

  7. Bernard, O., Ulm, F.-J., Lemarchand, E.: A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research 33(9), 1293–1309 (2003)

    Article  Google Scholar 

  8. Hellmich, C., Mang, H.A.: Shotcrete elasticity revisited in the framework of continuum micromechanics: from submicron to meter level. Journal of Materials in Civil Engineering (ASCE) 17(3), 246–256 (2005)

    Article  Google Scholar 

  9. Pichler, B., Scheiner, S., Hellmich, C.: From Micron-sized Needle-shaped Hydrates to Meter-sized Shotcrete Tunnel Shells: Micromechanical Upscaling of Stiffness and Strength of Hydrating Shotcrete. Acta Geotechnica 3(4), 273–294 (2008)

    Article  Google Scholar 

  10. Pichler, B., Hellmich, C., Eberhardsteiner, J.: Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength. Acta Mechanica 203(3-4), 137–162 (2009)

    Article  MATH  Google Scholar 

  11. Dormieux, L., Molinari, A., Kondo, D.: Micromechanical approach to the behavior of poroelastic materials. Journal of Mechanics and Physics of Solids 50(10), 2203–2231 (2002)

    Article  MATH  Google Scholar 

  12. Pichler, B., Hellmich, C.: Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model. Cement and Concrete Research (2011), doi:10.1016/j.cemconres.2011.01.010

    Google Scholar 

  13. Scheiner, S., Hellmich, C.: Continuum microviscoelasticity model for aging basic creep of early-age concrete. Journal of Engineering Mechanics (ASCE) 135(4), 307–323 (2009)

    Article  Google Scholar 

  14. Ullah, S., Pichler, B., Scheiner, S., Hellmich, C.: Improved micromechanics-based safety assessment of shotcrete tunnels, through shell-specific Interpolation of easured 3D displacements. Computer Modeling in Engineering & Sciences 57(3), 279–316 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pichler, B., Hellmich, C., Eberhardsteiner, J. (2011). STRENGTH OF GEOMATERIALS: MULTISCALE THEORIES AND EXPERIMENTS AT APPROPRIATE PROBLEM-DEPENDENT LENGTH SCALES. In: Borja, R.I. (eds) Multiscale and Multiphysics Processes in Geomechanics. Springer Series in Geomechanics and Geoengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19630-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19630-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19629-4

  • Online ISBN: 978-3-642-19630-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics