Skip to main content

Conclusions

  • Chapter
  • First Online:
The Transient Radio Sky

Part of the book series: Springer Theses ((Springer Theses))

  • 521 Accesses

Abstract

Here we quickly summarise the work presented in this thesis. After a review of radio transients (Chap. 1) and neutron stars (Chap. 2) we examined, in Chap. 3, what it would mean if RRATs were, as had been suggested, a distinct population of Galactic neutron stars. This led us to conclude that there would be a ‘birthrate problem’, i.e. the observed classes of neutron stars would be incompatible with the observed supernova rate. However this is only the case if the classes are distinct and can be resolved if the various observed manifestations are in fact evolutionarily linked in some way. No such evolutionary framework exists for pulsars, which demonstrates our lack of knowledge of neutron star evolution post-supernova.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Appendix C for some supplementary information for Chap. 3.

  2. 2.

    In fact the RRAT label is not permanent: a source may be detected as a RRAT but subsequently be more easily detected in periodicity observations, even for identical observing setups. This was the case for the PMSingle source J1652\({-}\)4406.

  3. 3.

    Here, and below, we use ‘RRAT search’ as a synonym for ‘searches for isolated single bursts’.

  4. 4.

    This is yet another argument, if any were needed(!) in favour of surveying the sky multiple times.

  5. 5.

    There must be a low-luminosity turn-over so that the integral \(\int N(L)dL\) does not diverge at the low end. Here \(N(L)dL\) denotes the number of pulsars with luminosity between \(L\) and \(L+dL.\)

  6. 6.

    RRAT pulse amplitude distributions will shed more light on these matters (Miller et al. submitted).

  7. 7.

    It might add to the belief that RRATs are a completely distinct population.

  8. 8.

    Consider a simple calculation for a pulsar with radio flux density of \(10\,\hbox{mJy},\) a distance \(1\) kpc away. Its radio pseudo-luminosity is then \(10^{-2}\,{\rm Jy\,kpc}^2\approx10^{1}1\,{\rm W\,Hz}^{-1}\) (see Eq. A.9). Assuming a constant flux density over a GHz bandwidth gives a luminosity of \(E_{{\rm radio}}=10^{20}\;{\rm J\,s^{-1}}=10^{27}\;{\rm erg\,s^{-1}}\) which we can compare to the \(\dot{E}\) values reported throughout this thesis.

  9. 9.

    The remainder of the answer to this question is conjecture!

  10. 10.

    This assertion was true of the data which had been accumulated up to the original discovery paper [25], but is no longer a true statement.

References

  1. J.D. Biggs, ApJ 394, 574 (1992)

    Article  ADS  Google Scholar 

  2. S. Burke-Spolaor, M. Bailes, MNRAS 402, 855 (2010)

    Article  ADS  Google Scholar 

  3. I. Contopoulos, A&A 442, 579 (2005)

    Article  ADS  Google Scholar 

  4. I. Contopoulos, D. Kazanas, C. Fendt, ApJ 511, 351 (1999)

    Article  ADS  Google Scholar 

  5. J.M. Cordes, T.J.W. Lazio, preprint (2002). arXiv:astro-ph/0207156

    Google Scholar 

  6. J. S. Deneva et al., ApJ 703, 2259 (2009)

    Article  ADS  Google Scholar 

  7. J.M. Durdin, M.I. Large, A.G. Little, R.N. Manchester, A.G. Lyne, J.H. Taylor, MNRAS 186, 39 (1979)

    Article  ADS  Google Scholar 

  8. R.P. Eatough, Ph.D. thesis (University of Manchester, 2009)

    Google Scholar 

  9. C.-A. Faucher-Giguère, V.M. Kaspi, ApJ 643, 332 (2006)

    Article  ADS  Google Scholar 

  10. A.J. Faulkner et al., MNRAS 355, 147 (2004)

    Article  ADS  Google Scholar 

  11. F. Haberl, Astrophys. Space Sci. 308, 171 (2007) astro-ph/0609066

    Article  ADS  Google Scholar 

  12. A. Karastergiou, A.W. Hotan, van W. Straten, M.A. McLaughlin, S.M. Ord, MNRAS 396, 95 (2009) (astro-ph/0905.1250)

    Article  ADS  Google Scholar 

  13. V.M. Kaspi, ArXiv e-prints (2010). astro-ph/1005.0876

    Google Scholar 

  14. E.F. Keane, ArXiv e-prints (2010). astro-ph/1008.3693

    Google Scholar 

  15. E.F. Keane, D.A. Ludovici, R.P. Eatough, M. Kramer, A.G. Lyne, M.A. McLaughlin, B.W. Stappers, MNRAS 401, 1057 (2010)

    Article  ADS  Google Scholar 

  16. V.I. Kondratiev, M. Burgay, A. Possenti, M.A. McLaughlin, D.R. Lorimer, R. Turolla, S. Popov, S. Zane, in American Institute of Physics Conference Series, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi, 40 Years of Pulsars: millisecond Pulsars, Magnetars and More, vol. 983, (2008), p. 348

    Google Scholar 

  17. V.I. Kondratiev, M.A. McLaughlin, D.R. Lorimer, M. Burgay, A. Possenti, R. Turolla, S.B. Popov, S. Zane, ApJ 702, 692 (2009)

    Article  ADS  Google Scholar 

  18. M. Kramer, A.G. Lyne, J.T. O’Brien, C.A. Jordan, D.R. Lorimer, Science 312, 549 (2006)

    Article  ADS  Google Scholar 

  19. D.R. Lorimer, F. Camilo, K.M. Xilouris, ApJ 123, 1750 (2002)

    ADS  Google Scholar 

  20. D.R. Lorimer et al., MNRAS 372, 777 (2006)

    Article  ADS  Google Scholar 

  21. A. Lyne, G. Hobbs, M. Kramer, I. Stairs, B. Stappers, Science 329, 408 (2010)

    Article  ADS  Google Scholar 

  22. R.N. Manchester et al., MNRAS 328, 17 (2001)

    Article  ADS  Google Scholar 

  23. M. McLaughlin, in Astrophysics and Space Science Library, ed. by W. Becker, vol. 357 (ASSL, 2009), p. 41

    Google Scholar 

  24. M.A. McLaughlin et al., MNRAS 400, 1431 (2009)

    Article  ADS  Google Scholar 

  25. M.A. McLaughlin et al., Nature 439, 817 (2006)

    Article  ADS  Google Scholar 

  26. J.M. Rankin, G.A.E. Wright, MNRAS 385, 1923 (2008)

    Article  ADS  Google Scholar 

  27. S.L. Redman, J.M. Rankin, MNRAS 395, 1529 (2009)

    Article  ADS  Google Scholar 

  28. S.L. Redman, G.A.E. Wright, J.M. Rankin, MNRAS 357, 859 (2005)

    Article  ADS  Google Scholar 

  29. J.P. Ridley, D.R. Lorimer, MNRAS 404, 1081 (2010)

    Article  ADS  Google Scholar 

  30. A.N. Timokhin, MNRAS 368, 1055 (2006)

    Article  ADS  Google Scholar 

  31. A.N. Timokhin, ArXiv e-prints (2009). astro-ph/0912.2995

    Google Scholar 

  32. M. Vivekanand, MNRAS 274, 785 (1995)

    Article  ADS  Google Scholar 

  33. N. Wang, R.N. Manchester, S. Johnston, MNRAS 377, 1383 (2007)

    Article  ADS  Google Scholar 

  34. P. Weltevrede, R.T. Edwards, B.W. Stappers, A&A 445, 243 (2006)

    Article  ADS  Google Scholar 

  35. P. Weltevrede, B.W. Stappers, J.M. Rankin, G.A.E. Wright, ApJ 645, L149 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Francis Keane .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keane, E.F. (2011). Conclusions. In: The Transient Radio Sky. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19627-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19627-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19626-3

  • Online ISBN: 978-3-642-19627-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics