Skip to main content

On the Birthrates of Galactic Neutron Stars

  • Chapter
  • First Online:
  • 533 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The following chapter is an enhanced version of a paper published in the Monthly Notices of the Royal Astronomical Society in 2008: Keane and Kramer[27]. As presented, this chapter, presents investigations based upon the state of knowledge as it was in 2008. It is presented in this way so as to keep the logical flow of the thesis chronological. The following chapters will expand on what has been learnt up to the present, and, in particular, Chaps. 8 and 9 give an up to date summary and overview, incorporating both the work in this thesis and that of many other authors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This transition from X-ray binary to millisecond pulsar has recently been observed in PSR J1023+0038 [2].

  2. 2.

    Some authors also define 1E 161348-5055, the source associated with the RCW 103 supernova remnant as a CCO. However here we follow the definition of Halpern and Gotthelf [23] and take CCOs as having steady X-ray flux. RCW 103 has variable X-ray flux.

  3. 3.

    We could also separate out the current in the \(\dot{P}\) direction but this would require a knowledge of \(\ddot{P}\) which we do not have.

  4. 4.

    And we have used the Leibniz Integral Rule, i.e. \({\frac{d}{dx}}\int f (x,y) dy = \int {\frac{\partial}{\partial x}}f(x,y)dy.\)

  5. 5.

    We note the extra downward emission above the surfaces of pulsars will act as a heating mechanism of the polar cap. This scenario does not apply for RRATs and XDINSs if they are ‘off’ most and all of the time.

  6. 6.

    The exact range depends on how convection is treated, e.g. large convective overshooting and low metallicity make the limit go from \(12\;\) to \(10\;\hbox{M}_{\bigodot}\) [14], hence the uncertainty in the high mass value.

  7. 7.

    In more massive stars the core does not become degenerate, Ne burns, and eventually an Fe core forms and we get a CCSN.

  8. 8.

    In Appendix C we mention some updated supplementary information pertaining to this chapter.

References

  1. M.A. Alpar, A.F. Cheng, M.A. Ruderman, J. Shaham, Nature 300, 728 (1982)

    Article  ADS  Google Scholar 

  2. A.M. Archibald et al., Science 324, 1411 (2009)

    Article  ADS  Google Scholar 

  3. P. Arras, A. Cumming, C. Thompson, ApJ 608, L49 (2004)

    Article  ADS  Google Scholar 

  4. F. Camilo, S.M. Ransom, J.P. Halpern, J. Reynolds, D.J. Helfand, N. Zimmerman, J. Sarkissian, Nature 442, 892 (2006)

    Article  ADS  Google Scholar 

  5. F. Camilo, J. Reynolds, S. Johnston, J.P. Halpern, S.M. Ransom, ApJ 681, 681 (2008) (astro-ph/0802.0494)

    Article  ADS  Google Scholar 

  6. K. Chen, M. Ruderman, ApJ 402, 264 (1993)

    Article  ADS  Google Scholar 

  7. M. Colpi, U. Geppert, D. Page, ApJ 529, L29 (2000)

    Article  ADS  Google Scholar 

  8. J.M. Cordes, M. Kramer, T.J.W. Lazio, B.W. Stappers, D.C. Backer, S. Johnston, New Astr. 48, 1413 (2004)

    Article  ADS  Google Scholar 

  9. J.M. Cordes, T.J.W. Lazio, preprint (arXiv:astro-ph/0207156)

    Google Scholar 

  10. J.M. Cordes, T.J. Lazio, preprint (arXiv:astro-ph/0301598)

    Google Scholar 

  11. J.M. Cordes et al., ApJ 637, 446 (2006)

    Article  ADS  Google Scholar 

  12. A. de Luca, in American Institute of Physics Conference Series, Vol. 983, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi (40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, 2008), p. 311

    Google Scholar 

  13. R. Diehl et al., Nature 439, 45 (2006)

    Article  ADS  Google Scholar 

  14. J.J. Eldridge, C.A. Tout, MNRAS 353, 87 (2004)

    Article  ADS  Google Scholar 

  15. C.-A. Faucher–Giguère, V.M. Kaspi, ApJ 643, 332 (2006)

    Article  ADS  Google Scholar 

  16. R.D. Ferdman et al., in American Institute of Physics Conference Series, Vol. 983, ed. by C. Bassa, Z. Wang, A. Cumming, V. M. Kaspi, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More (2008), p. 474 (astro-ph/0711.4927), http://adsabs.harvad.edu/abs/2008AIPC..983..474F

  17. L. Ferrario, D. Wickramasinghe, MNRAS 389, L66 (2008)

    Article  ADS  Google Scholar 

  18. B.M. Gaensler, D.C.-J. Bock, B.W. Stappers, ApJ 537, L35 (2000)

    Article  ADS  Google Scholar 

  19. R. Gill, J. Heyl, MNRAS 382, 52 (2007)

    Article  ADS  Google Scholar 

  20. J.E. Grindlay, in The Origin and Evolution of Neutron Stars, IAU Symposium No. 125, ed. by D.J. Helfand, J. Huang (Reidel, Dordrecht, 1987), p. 173

    Google Scholar 

  21. F. Haberl, Adv. Space Res. 33, 638 (2004)

    Article  ADS  Google Scholar 

  22. F. Haber, Astrophysics and Space Science 308, 171 (2007) (astro-ph/0609066)

    Article  ADS  Google Scholar 

  23. J.P. Halpern, E.V. Gotthelf, ApJ 709, 436 (2010)

    Article  ADS  Google Scholar 

  24. G. Hobbs, D.R. Lorimer, A.G. Lyne, M. Kramer, MNRAS 360, 974 (2005)

    Article  ADS  Google Scholar 

  25. D.L. Kaplan, D.A. Frail, B.M. Gaensler, E.V. Gotthelf, S.R. Kulkarni, P.O. Slane, A. Nechita, ApJS 153, 269 (2004)

    Article  ADS  Google Scholar 

  26. D.L. Kaplan, B.M. Gaensler, S.R. Kulkarni, P.O. Slane, ApJS 163, 344 (2006)

    Article  ADS  Google Scholar 

  27. E.F. Keane, M. Kramer, MNRAS 391, 2009 (2008)

    Article  ADS  Google Scholar 

  28. M.J. Keith, S. Johnston, M. Kramer, P. Weltevrede, K.P. Watters, B.W. Stappers, MNRAS 389, 1881 (2008)

    Article  ADS  Google Scholar 

  29. V.I. Kondratiev, M. Burgay, A. Possenti, M.A. McLaughlin, D.R. Lorimer, R. Turolla, S. Popov, S. Zane, in American Institute of Physics Conference Series. Vol. 983, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More (2008), p. 348, http://adsabs.harvard.edu/abs/2008AIPC..983..348K

  30. C. Kouveliotou et al., Nature 393, 235 (1998)

    Article  ADS  Google Scholar 

  31. J.M. Lattimer, B.F. Schutz, ApJ 629, 979 (2005)

    Article  ADS  Google Scholar 

  32. M.A. Livingstone, V.M. Kaspi, F.P. Gavriil, R.N. Manchester, E.V.G. Gotthelf, L. Kuiper, Ap&SS 308, 317L (2007)

    Article  ADS  Google Scholar 

  33. D.R. Lorimer et al., MNRAS 372, 777 (2006)

    Article  ADS  Google Scholar 

  34. D.R. Lorimer, M. Kramer, Handbook of Pulsar Astronomy (Cambridge University Press, 2005)

    Google Scholar 

  35. A.G. Lyne, in Young Neutron Stars and Their Environments, vol. 1, Gaensler IAU Symposium 218, ed. by F. Camilo, B.M. Gaensler (Astronomical Society of the Pacific, San Francisco, 2004), p. 257

    Google Scholar 

  36. V.M. Malofeev, J.A. Gil, A. Jessner, I.F. Malov, J.H. Seiradakis, W. Sieber, R. Wielebinski, A&A 285, 201 (1994)

    ADS  Google Scholar 

  37. O. Maron, J. Kijak, M. Kramer, R. Wielebinski, A&AS 147, 195 (2000)

    Article  ADS  Google Scholar 

  38. M.A. McLaughlin et al., Nature 439, 817 (2006)

    Article  ADS  Google Scholar 

  39. M.P. Muno, B.M. Gaensler, A. Nechita, J.M. Miller, P.O. Slane, ApJ 680, 639 (2008)

    Article  ADS  Google Scholar 

  40. K. Nomoto, ApJ 277, 791 (1984)

    Article  ADS  Google Scholar 

  41. K. Nomoto, ApJ 322, 206 (1987)

    Article  ADS  Google Scholar 

  42. G.G. Pavlov, D. Sanwal, G.P. Garmire, V.E. Zavlin, in Neutron Stars in Supernova Remnants, ed. by P.O. Slane, B.M. Gaensler. Astronomical Society of the Pacific Conference Series, vol. 271, (2002), p. 247

    Google Scholar 

  43. E. Pfahl, S. Rappaport, P. Podsiadlowski, ApJ 573, 283 (2002)

    Article  ADS  Google Scholar 

  44. E.S. Phinney, R.D. Blandford, MNRAS 194, 137 (1981)

    Article  ADS  Google Scholar 

  45. P. Podsiadlowski, J.D.M. Dewi, P. Lesaffre, J.C. Miller, W.G. Newton, J.R. Stone, MNRAS 361, 1243 (2005)

    Article  ADS  Google Scholar 

  46. P. Podsiadlowski, N. Langer, A.J.T. Poelarends, S. Rappaport, A. Heger, E.D. Pfahl, ApJ 612, 1044 (2004)

    Article  ADS  Google Scholar 

  47. A.J.T. Poelarends, F. Herwig, N. Langer, A. Heger, ApJ 675, 614 (2008)

    Article  ADS  Google Scholar 

  48. S.B. Popov, R. Turolla, A. Possenti, MNRAS 369, L23 (2006)

    Article  ADS  Google Scholar 

  49. W. Poppel, Fund. Cos. Phys. 18, 1 (1997)

    ADS  Google Scholar 

  50. B. Posselt, S.B. Popov, F. Haberl, J. Truemper, R. Turolla, R. Neuhaeuser, A&A 482, 617 (2008) (astro-ph/0801.4567)

    Article  ADS  Google Scholar 

  51. W.W. Stahler, F. Palla, The Formation of Stars (Weinheim, Wiley-VCH, 2004)

    Book  Google Scholar 

  52. T.M. Tauris, R.N. Manchester, MNRAS 298, 625 (1998)

    Article  ADS  Google Scholar 

  53. J.H. Taylor, J.M. Cordes, ApJ 411, 674 (1993)

    Article  ADS  Google Scholar 

  54. A. Tiengo, S. Mereghetti, ApJ 657, L101 (2007)

    Article  ADS  Google Scholar 

  55. E.P.J. van den Heuvel, in The Multicolored Landscape of Compact Objects and Their Explosive Origins, ed. by di T. Salvo, G.L. Israel, L. Piersant, L. Burderi, G. Matt, A. Tornambe, M.T. Menna, American Institute of Physics Conference Series, Vol. 924, (2007), p. 598

    Google Scholar 

  56. van Kerkwijk, Kaplan, APJ 673, L163 (2008), http://adsabs.harvard.edu/abs/2008APJ...673L.163V

  57. J. van Leeuwen, B. Stappers, in American Institute of Physics Conference Series, Vol. 983, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More (2008), p. 598

    Google Scholar 

  58. J. van Paradijs, R.E. Taam, van den E.P.J. Heuvel, A&A 299, L41 (1995)

    ADS  Google Scholar 

  59. M. Vivekanand, R. Narayan, J. Astrophys. Astr. 2, 315 (1981)

    Article  ADS  Google Scholar 

  60. W. Voges et al., A&A 349, 389 (1999)

    ADS  Google Scholar 

  61. N. Vranesevic et al., ApJ 617, L139 (2004)

    Article  ADS  Google Scholar 

  62. F.M. Walter, S.J. Wolk, R. Neuhauser, Nature 379, 233 (1996)

    Article  ADS  Google Scholar 

  63. M.C. Weisskopf et al., ApJ 652, 387 (2006)

    Article  ADS  Google Scholar 

  64. R. Wijnands, van der M. Klis, Nature 394, 344 (1998)

    Article  ADS  Google Scholar 

  65. P.M. Woods, C. Thompson, ed. by W.H.G. Lewin, M. Vander Klis in Compact Stellar X-ray Sources (CUP, Cambridge, 2004) (astro-ph/0406133)

    Google Scholar 

  66. D.G. Yakovlev, C.J. Pethick, Ann. Rev. Astr. Ap. 42, 169 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Francis Keane .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keane, E.F. (2011). On the Birthrates of Galactic Neutron Stars. In: The Transient Radio Sky. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19627-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19627-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19626-3

  • Online ISBN: 978-3-642-19627-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics