Skip to main content

Machine learning and screening data

  • Chapter
  • First Online:
Chemogenomics and Chemical Genetics
  • 1201 Accesses

Abstract

In all living beings, to differing degrees and with the help of extremely varying mechanisms (genetic, chemical or cultural), one observes an aptitude for acquiring new behaviour through their interaction with the environment. The objective of machine learning is to study and put into effect such mechanisms using artificial systems: robots, computers etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

AND INTERNET SITES: [Accamba]: website of the Accamba project: http://accamba.imag.fr/

  • ALPHONSE E., ROUVEIROL C. (2000) Lazy propositionalisation for Relational Learning. In Proc. of the 14th European Conference on Artificial Intelligence (ECAI-2000), IOS Press, Berlin: 256-260

    Google Scholar 

  • BAJORATH J. (2002) Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1: 882-894

    Article  CAS  Google Scholar 

  • BESALÚ E., GIRONÉS X., AMAT L., CARBÓ-DORCA R. (2002) Molecular quantum similarity and the fundamentals of QSAR. Acc. Chem. Res. 35: 289-295

    Article  Google Scholar 

  • [Codessa]: website giving a list of descriptors organised by type: http://www.codessa-pro.com

  • COOK D.J., HOLDER L.B. (1994) Substructure Discovery Using Minimum Description Length and Background Knowledge. J. Artif. Intell. Res. 1: 231-255

    Google Scholar 

  • CORNUEJOLS A., MICLET L. (2002) Apprentissage Artificiel. Eyrolles, Paris

    Google Scholar 

  • DEHASPE L., DE RAEDT L. (1997) Mining association rules in multi-relational databases. In Proc. of ILP’97 workshop, Springer Verlag, Berlin-Heidelberg-New York: 125-132

    Google Scholar 

  • DESHPANDE M., KURAMOCHI M., KARIPYS G. (2003) Frequent Sub-Structure-Based Approaches for Classifying Chemical Compounds. Technical Report. In Proc. of IEEE Int. Conference on Data Mining (ICDM03) IEEE Computer Society Press, Melbourne, Floride

    Google Scholar 

  • FINN P., MUGGLETON S.H., PAGE D., SRINIVASAN A. (1998) Pharmacophore discovery using the Inductive Logic Programming system PROGOL. Machine Learning 30: 241-271

    Article  Google Scholar 

  • FLACH P., LACHICHE N. (2005) Naive Bayesian Classification of Structured Data. Machine Learning 57: 233-269

    Article  Google Scholar 

  • FLOWER D.R. (1998) On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 38: 379-386

    CAS  Google Scholar 

  • FRÖHLICH H., WEGNER J., SIEKER F., ZELL R. (2005) Optimal Assignment Kernels for Attributed Molecular Graphs. In Proc. of Int. Conf. on Machine Learning (ICML): 225-232

    Google Scholar 

  • GÄRTNER T. (2003) A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter 5(1): 49-58

    Article  Google Scholar 

  • GONZALEZ J., HOLDER L., COOK D. (2001) Application of graph based concept learning to the predictive toxicology domain. In PTC Workshop at the 5th PKDD, Université de Freiburg

    Google Scholar 

  • HELMA C., GOTTMANN E., KRAMER S. (2000) Knowledge Discovery and Data Mining in Toxicology. Stat. Methods Med. Res. 9: 329-358

    Article  CAS  Google Scholar 

  • HELMA C., KRAMER S. (2003a) A survey of the Predictive Toxicology Challenge 2000-2001. Bioinformatics 19: 1179-1182

    Article  CAS  Google Scholar 

  • HELMA C., KRAMER S., DE RAEDT L. (2003b) The Molecular Feature Miner MolFea. In Proc. of the Beilstein Workshop 2002, Beilstein Institut, Frankfurt am Main

    Google Scholar 

  • [Helma-PredTox]: website offering data and tools for the prediction of toxicological properties: http://www.predictive-toxicology.org/

  • [HIV-Data-Set-1997]: website offering a public dataset of screening results the AIDS Screening Results, (May’ 97 Release): http://dtpws4.ncifcrf.gov/DOCS/AIDS/AIDS_DATA.HTML

  • KING R.D., MARCHAND-GENESTE N., ALSBERG B. (2001) A quantum mechanics based representation of molecules for machine inference. Electronic Transactions on Artificial Intelligence 5: 127-142

    Google Scholar 

  • KING R.D., WHELAN K.E., JONES F.M., REISER P.G., BRYANT C.H, MUGGLETON S.H., KELL D.B., OLIVER S.G. (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427: 247-252

    Article  CAS  Google Scholar 

  • KRAMER S., LAVRAC N., FLACH P. (2001) Propositionalization approaches to relational data mining. In Relational Data Mining (DZEROSKI S., LAVRAC N. Eds) Springer Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • LANDWEHR N., PASSERINI A., RAEDT L. D., FRASCONI P. (2006) kFOIL: Learning Simple Relational Kernels. In Proc. of Twenty-First National Conference on Artificial Intelligence (AAAI-06), AAAI, Boston

    Google Scholar 

  • LIPINSKI C.A., LOMBARDO F., DOMINY, B.W., FEENEY P.J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv. Drug Deliv. Rev. 46: 3-26

    Article  CAS  Google Scholar 

  • [Liu-Yu-2002]: Features selection for data mining: a survey: http://www.public.asu.edu/~huanliu/sur-fs02.ps

  • LIU H., YU L. (2005) Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Trans. on Knowledge and Data Engineering 17: 1-12

    Article  Google Scholar 

  • MARCHAND-GENESTE N., WATSON K.A., ALSBERG B.K., KING R.D. (2002) A new approach to pharmacophore mapping and QSAR analysis using Inductive Logic Programming. Application to thermolysin inhibitors and glycogen phosphorylase b inhibitors. J. Med. Chem. 45: 399-409

    Article  CAS  Google Scholar 

  • MAYER D., MOTOC I., MARSHALL G. (1987) A unique geometry of the active site of angiotensin-converting enzyme consistent with structure-activites studies. J. Comput. Aided Mol. Des. 1: 3-16

    Article  CAS  Google Scholar 

  • MICHALSKI R.S. (1986) Understanding the nature of learning: Issues and research directions. In Machine Learning: An Artificial Intelligence Approach, Vol. II, Morgan Kaufmann, San Francisco, CA : 3-25

    Google Scholar 

  • MITCHELL T. (1997) Machine learning. Mc Graw Hill, New York.

    Google Scholar 

  • OKADA T. (2003) Characteristic substructures and properties in chemical carcinogens studied by the cascade model. Bioinformatics 19: 1208-1215

    Article  CAS  Google Scholar 

  • QUINLAN J.R. (1993) C4.5: Programs for Empirical Learning. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • QUINLAN J.R. (1990) Learning logical definitions from relations. Machine Learning 5: 239-266

    Google Scholar 

  • RUSSELL S.J., NORVIG P. (2003) Artificial Intelligence: a modern approach. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • SEBAG M., ROUVEIROL C. (2000) Resource-bounded Relational Reasoning: Induction and Deduction Through Stochastic Matching. Machine Learning 38: 41-62

    Article  Google Scholar 

  • SEBAG M., AZÉ J., LUCAS N. (2003) Impact Studies and Sensitivity Analysis in Medical Data Mining with ROC-based Genetic Learning. In Proc. of IEEE Int. Conference on Data Mining (ICDM03), IEEE Computer Society Press, Melbourne, Floride: 637-640

    Chapter  Google Scholar 

  • SEIFERT M., WOLF K.,VITT D. (2003) Virtual high-throughput in silico screening. Biosilico 1: 143-149

    Article  CAS  Google Scholar 

  • SRINIVASAN A., KING R.D., MUGGLETON S. (1999) The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program. In Technical Report PRGTR -08-99, Oxford University Computing Laboratory, Oxford

    Google Scholar 

  • STERNBERG M.J.E., MUGGLETON S.H. (2003) Structure-activity relationships (SAR) and pharmacophore discovery using inductive logic programming (ILP). QSAR and Combinatorial Science 22: 527-532

    Article  CAS  Google Scholar 

  • TODESCHINI R., CONSONNI V. (2000) Handbook of Molecular Descriptors (MANNHOLD R., KUBINYI H., TIMMERMAN H. Eds.) Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  • VAPNIK V. (1998) The Statistical Learning Theory. John Wiley, New York

    Google Scholar 

  • WEININGER D. (1988) SMILES: a chemical language and information system. 1. Introduction and Encoding Rules. J. Chem. Inf. Comput. Sci. 28: 31-36

    CAS  Google Scholar 

  • WITTEN I.H., EIBE F. (2005) Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • [Weka]: site Weka: http://www.cs.waikato.ac.nz/~ml/weka/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bisson, G. (2011). Machine learning and screening data. In: MARECHAL, E., Roy, S., Lafanechère, L. (eds) Chemogenomics and Chemical Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19615-7_15

Download citation

Publish with us

Policies and ethics