Advertisement

Molecular Lipophilicity: A Predominant Descriptor for QSAR

  • Gérard Grassy
  • Alain Chavanieu
Chapter

Abstract

The discovery of a new medicine is a complex and costly process, in which the role of chance and fortuitous observation is often predominant. Substantial effort has been afforded to rationalise the discovery process as much as possible. The methodologies relevant to rational drug design (according to international terminology) are today omnipresent as much in academic research centres as in industry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANFINSEN C., REDFIELD R. (1956) Protein structure in relation to function and biosynthesis. Adv. Protein Chem. 48: 1-100CrossRefGoogle Scholar
  2. AUDRY E., DUBOST J.P., COLLETER J.C., DALLET P. (1986) Le potentiel de lipophilie moléculaire, nouvelle méthode d’approche des relations structure-activité. Eur. J. Med. Chem. 21: 71-72Google Scholar
  3. BROTO P., MOREAU G., VANDYCKE C. (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. Eur. J. Med. Chem. 19: 71-78Google Scholar
  4. CONNOLLY M.L. (1985) Computation of molecular volume. J. Am. Chem. Soc. 107: 1118-1124CrossRefGoogle Scholar
  5. FUJITA T., HANSCH C. (1967) Analysis of the structure-activity relationship of the sulfonamide drugs using substituent constants. J. Med. Chem. 10: 991-1000CrossRefGoogle Scholar
  6. GRASSY G., CALAS B., YASRI A., LAHANA R., WOO J., IYER S., KACZOREK M., FLOC’H R., BUELOW R. (1998) Computer-assisted rational design of immunosuppressive compounds. Nat. Biotechnol. 16: 748-752CrossRefGoogle Scholar
  7. HANSCH C., LIEN E.J., HELMER F. (1968) Structure-activity correlations in the metabolism of drugs. Arch. Biochem. Biophys. 128: 319-330CrossRefGoogle Scholar
  8. HANSCH C., MALONEY P.P., FUJITA T., MUIR R.M. (1962) Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 194: 178-180CrossRefGoogle Scholar
  9. HANSCH C., MUIR R.M. (1961) Electronic effect of substituents on the activity of phenoxyacetic acids. In Plant growth regulation, Iowa State University Press: 431Google Scholar
  10. HANSCH C., MUIR R.M. (1951) Relationship between structure and activity in the substituted benzoic and phenoxyacetic acids. Plant Physiol. 26: 369-374CrossRefGoogle Scholar
  11. KAMLET M., DOHERTY R., ABBOUD, J.L., ABRAHAM M., TAFT R. (1986) Linear solvation energy relationships: 36. molecular properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci. 75: 338-349CrossRefGoogle Scholar
  12. KIER L.B., HALL L.H., MURRAY W.J., RANDIC M. (1975) Molecular connectivity. I: Relationship to nonspecific local anesthesia. J. Pharm. Sci. 64: 1971-1974CrossRefGoogle Scholar
  13. MEYER H.H. (1899) Theorie der Alkoholnarkose. Arch. Exp. Pathol. Pharmakol. 42: 109-118CrossRefGoogle Scholar
  14. MEYER H.H. (1901) Zur Theorie der Alkoholnarkose. III. Der Einfluss wechselender Temperatur auf Wikungs-starke and Teilungs Koefficient der Nalkolicka. Arch. Exp. Pathol. Pharmakol. 154: 338-346Google Scholar
  15. OVERTON C.E. (1901) Studien uber Narkose, zugleich ein Beitrag zur allgemeinen Pharmakologie. Fisher, Jena, AllemagneGoogle Scholar
  16. REKKER R.F. (1977) The hydrophobic fragment constant. Elsevier, New York, USAGoogle Scholar
  17. VAN DE WATERBEEMD H., TESTA B., CARRUPT P.A., TAYAR N. (1989) Multivariate data analyses of QSAR parameters. Prog. Clin. Biol. Res. 291: 123-126Google Scholar
  18. WILSON L.Y., FAMINI G.R. (1991) Using theoretical descriptors in quantitative structureactivity relationships: some toxicological indices. J. Med. Chem. 34: 1668-1674CrossRefGoogle Scholar
  19. YALKOWSKY S.H., VALVANI S.C. (1980) Solubility and partitioning. I: solubility of nonelectrolytes in water. J Pharm. Sci. 69: 912-922CrossRefGoogle Scholar
  20. YOUNG R.C., MITCHELL R.C., BROWN T.H., GANELLIN C.R., GRIFFITHS R., JONES M., RANA K.K., SAUNDERS D., SMITH I.R., SORE N.E. (1988) Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem. 31: 656-671CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gérard Grassy
    • 1
  • Alain Chavanieu
    • 1
  1. 1.Centre for Structural Biochemistry, Faculty of PharmacyCNRS - Servier - University of Montpellier - INSERMMontpellierFrance

Personalised recommendations