Skip to main content

Paenibacillus, Nitrogen Fixation and Soil Fertility

  • Chapter
  • First Online:
Endospore-forming Soil Bacteria

Part of the book series: Soil Biology ((SOILBIOL,volume 27))

Abstract

Plant growth-promoting rhizobacteria (PGPR) can influence the growth and health of plants directly, by the suppression of deleterious microorganisms through antagonistic functions, by inducing plant resistance to diseases, by furnishing nutrients, by the production of plant growth-regulating substances, and/or by fixing atmospheric nitrogen. Within the genus Paenibacillus, 16 species are considered to harbour nitrogen-fixing strains: P. polymyxa, P. macerans, P. peoriae, P. durus, P. brasilensis, P. graminis, P. odorifer, P. borealis, P. wynnii, P. massiliensis, P. sabinae, P. donghaensis, P. zanthoxyli, P. forsythiae, P. riograndensis and P. sonchi. Besides the capability to fix nitrogen, many strains belonging to these species present other characteristics important for plant health and growth promotion. The contributions of these species as PGPR and/or to soil fertility are discussed in this chapter. Moreover, methods that provide a rapid tool for the characterization and the establishment of the taxonomic position of isolates belonging to the nitrogen-fixing group are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera M, Monteoliva-Sanchez M, Suarez A, Guerra V, Lizama C, Bennasar A, Ramos-Cormenzana A (2001) Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater. Int J Syst Evol Microbiol 51:1687–1692

    PubMed  CAS  Google Scholar 

  • Aktuganov GE, Melent'ev AI, Galimzianova NF, Shirokov AV (2008) The study of mycolytic properties of aerobic spore-forming bacteria producing extracellular chitinases. Mikrobiologiia 77:788–797

    PubMed  CAS  Google Scholar 

  • Albuquerque JP, da Mota FF, von der Weid I, Seldin L (2006) Diversity of Paenibacillus durus strains isolated from soil and different plant rhizospheres evaluated by ARDRA and gyrB-RFLP analysis. Eur J Soil Biol 42:200–207

    Google Scholar 

  • Alvarez VM, von der Weid I, Seldin L, Santos AL (2006) Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett Appl Microbiol 43:625–630

    PubMed  CAS  Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206

    CAS  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64:253–260

    PubMed  CAS  Google Scholar 

  • Axelrood PE, Chow ML, Arnold CS, Lu K, McDermott JM, Davies J (2002) Cultivation-dependent characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 48:643–654

    PubMed  CAS  Google Scholar 

  • Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169

    PubMed  CAS  Google Scholar 

  • Beneduzi A, Peres D, da Costa PB, Bodanese Zanettini MH, Passaglia LM (2008) Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159:244–250

    PubMed  CAS  Google Scholar 

  • Beneduzi A, da Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH, Passaglia LMP (2010) Paenibacillus riograndensis, a nitrogen-fixing species isolated from rhizosphere of Triticum aestivum in Brazil. Int J Syst Evol Microbiol 60:128–133

    PubMed  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    PubMed  CAS  Google Scholar 

  • Berge O, Guinebretiere MH, Achouak W, Normand P, Heulin T (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616

    PubMed  CAS  Google Scholar 

  • Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342

    PubMed  CAS  Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed  CAS  Google Scholar 

  • Çakmakçi R, Erat M, Erdoğan U, Dönmez MF (2007) The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Google Scholar 

  • Chanway CP, Holl FB, Turkington R (1988) Genotypic coadaptation in plant growth promotion of forage species by Bacillus polymyxa. Plant Soil 106:281–284

    Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351

    PubMed  CAS  Google Scholar 

  • Choi J-H, Im W-T, Yoo J-S, Lee S-M, Moon D-S, Kim H-J, Rhee S-K, Roh D-H (2008) Paenibacillus donghaensis sp. nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. J Microbiol Biotechnol 18:189–193

    PubMed  CAS  Google Scholar 

  • Choo Q-C, Samian M-R, Najimudin N (2003) Phylogeny and characterization of three nifH-homologous genes from Paenibacillus azotofixans. Appl Environ Microbiol 69:3658–3662

    PubMed  CAS  Google Scholar 

  • Coelho MRR, von der Weid I, Zahner V, Seldin L (2003) Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiol Lett 222:243–250

    PubMed  CAS  Google Scholar 

  • Coelho MRR, da Mota FF, Carneiro NP, Marriel IE, Paiva E, Rosado AS, Seldin L (2007) Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer accessed by rpoB-based PCR-DGGE and sequencing analysis. J Microbiol Biotechnol 17:753–760

    PubMed  CAS  Google Scholar 

  • Coelho MRR, Carneiro NP, Marriel IE, Seldin L (2009) Molecular detection of nifH gene-containing Paenibacillus in the rhizosphere of sorghum (Sorghum bicolor) sown in Cerrado soil. Lett Appl Microbiol 48:611–617

    PubMed  CAS  Google Scholar 

  • da Mota FF, Nóbrega A, Marriel IE, Paiva E, Seldin L (2002) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of four maize genotypes plants in Cerrado soil. Appl Soil Ecol 20:119–132

    Google Scholar 

  • da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L (2004) Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 39:34–40

    PubMed  Google Scholar 

  • da Mota FF, Gomes EA, Paiva E, Seldin L (2005) Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiol Ecol 53:317–328

    PubMed  Google Scholar 

  • da Mota FF, Gomes EA, Seldin L (2008) Auxin production and detection of the gene coding for the Auxin Efflux Carrier (AEC) protein in Paenibacillus polymyxa. J Microbiol 46:257–264

    PubMed  Google Scholar 

  • Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Häggblom MM (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphtalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Bacteriol 52:131–139

    CAS  Google Scholar 

  • Dahllöf I, Baillie H, Kjelleberg S (2000) rpoB-based microbial community analysis avoids limitations inherent in 16S rDNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376–3380

    PubMed  Google Scholar 

  • Demba Diallo M, Willems A, Vloemans N, Cousin S, Vandekerckhove TT, de Lajudie P, Neyra M, Vyverman W, Gillis M, Van der Gucht K (2004) Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ Microbiol 6:400–415

    PubMed  Google Scholar 

  • Dijksterhuis J, Sanders M, Gorris LG, Smid EJ (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol 86:13–21

    PubMed  CAS  Google Scholar 

  • Elo S, Suominen I, Kampfer P, Juhanoja J, Salkinoja-Salonen M, Haahtela K (2001) Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51:535–545

    PubMed  CAS  Google Scholar 

  • Fogarty WM (1983) Microbial enzymes and biotechnology. Applied Science, Essex, England

    Google Scholar 

  • Fortes TO, Alviano DS, Tupinambá G, Padrón TS, Antoniolli AR, Alviano CS, Seldin L (2008) Production of an antimicrobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasiliensis. Microbiol Res 163:200–207

    PubMed  Google Scholar 

  • Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by planting and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    PubMed  CAS  Google Scholar 

  • Gordon RE, Haynes WC, Pang H-N (1973) The genus Bacillus. In: Agriculture Handbook no. 427. Agricultural Research Service, US Department of Agriculture, Washington, DC

    Google Scholar 

  • Grau FH, Wilson PW (1962) Physiology of nitrogen-fixation by Bacillus polymyxa. J Bacteriol 83:490–496

    PubMed  CAS  Google Scholar 

  • Halsall DM, Gibson AH (1985) Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans. Appl Environ Microbiol 50:1021–1026

    PubMed  CAS  Google Scholar 

  • He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73:168–178

    PubMed  CAS  Google Scholar 

  • Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24

    CAS  Google Scholar 

  • Hong Y-Y, Ma Y-C, Zhou Y-G, Gao F, Liu H-C, Chen S (2009) Paenibacillus sonchi sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 59:2656–2661

    PubMed  CAS  Google Scholar 

  • Jäderlund L, Arthurson V, Granhall U, Jansson JK (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180

    PubMed  Google Scholar 

  • Jeong H, Kim JF, Park Y-K, Kim S-B, Kim C, Park S-H (2006) Genome snapshot of Paenibacillus polymyxa ATCC 842T. J Microbiol Biotechnol 16:1650–1655

    CAS  Google Scholar 

  • Khammas KM, Kaiser P (1992) Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species. Can J Microbiol 38:794–797

    PubMed  CAS  Google Scholar 

  • Kim MK, Kim YA, Park MJ, Yang DC (2008) Paenibacillus ginsengihumi sp. nov., a bacterium isolated from soil in a ginseng field. Int J Syst Evol Microbiol 58:1164–1168

    PubMed  CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334

    CAS  Google Scholar 

  • Lee JC, Yoon KH (2008) Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int J Syst Evol Microbiol 58:612–616

    PubMed  CAS  Google Scholar 

  • Lee M, Ten LN, Baek SH, Im WT, Aslam Z, Lee ST (2007) Paenibacillus ginsengisoli sp. nov., a novel bacterium isolated from soil of a ginseng field in Pocheon Province, South Korea. Antonie Van Leeuwenhoek 91:127–135

    PubMed  CAS  Google Scholar 

  • Li J, Beatty PK, Shah S, Jensen SE (2007) Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol 73:3480–3489

    PubMed  CAS  Google Scholar 

  • Lorentz RH, Artico S, da Silveira AB, Einsfeld A, Corção G (2006) Evaluation of antimicrobial activity in Paenibacillus spp. strains isolated from natural environment. Lett Appl Microbiol 43:541–547

    PubMed  CAS  Google Scholar 

  • Lovell CR, Piceno YM, Quattro JM, Bagwell CE (2000) Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alterniflora. Appl Environ Microbiol 66:3814–3822

    PubMed  CAS  Google Scholar 

  • Ma YC, Chen SF (2008) Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int J Syst Evol Microbiol 58:319–323

    PubMed  CAS  Google Scholar 

  • Ma Y, Xia Z, Liu X, Chen S (2007a) Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 57:6–11

    PubMed  CAS  Google Scholar 

  • Ma Y, Zhang J, Chen S (2007b) Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans. Int J Syst Evol Microbiol 57:873–877

    PubMed  CAS  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bødker L (2002) Bacterial populations associated with mycelium of arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    PubMed  CAS  Google Scholar 

  • Mavingui P, Heulin T (1994) In vitro chitinase antifungal activity of a soil, rhizosphere and rhizoplane populations of Bacillus polymyxa. Soil Biol Biochem 26:801–803

    CAS  Google Scholar 

  • Montefusco A, Nakamura LK, Labeda DP (1993) Bacillus peoriae sp. nov. Int J Syst Bacteriol 43:388–390

    Google Scholar 

  • Nielsen P, Sorensen J (1997) Multi-target and medium independent fungal antagonisms by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192

    CAS  Google Scholar 

  • Oliveira SS, Seldin L, Bastos MCF (1993) Identification of structural nitrogen-fixation (nif) genes in Bacillus polymyxa and Bacillus macerans. World J Microbiol Biotechnol 9:387–389

    Google Scholar 

  • Peoples MB, Craswell ET (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39

    CAS  Google Scholar 

  • Petersen DJ, Srinivasan M, Chanway CP (1996) Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol Lett 142:271–276

    PubMed  CAS  Google Scholar 

  • Pettersson B, Rippere KE, Yousten AA, Priest FG (1999) Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. Int J Syst Bacteriol 49:531–540

    PubMed  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzal SM (1998) A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol 27:9–13

    PubMed  CAS  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbière F, Monrozier LJ (2001) Comparison of nifH gene pools in soil and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    PubMed  CAS  Google Scholar 

  • Priest FG (1993) Systematics and ecology of Bacillus. In: Sonenshein A, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington, DC, pp 3–16

    Google Scholar 

  • Qi Q, Zimmermann W (2005) Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol 66:475–485

    PubMed  CAS  Google Scholar 

  • Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555

    PubMed  CAS  Google Scholar 

  • Reynaldi FJ, De Giusti MR, Alippi AM (2004) Inhibition of the growth of Ascosphaera apis by Bacillus and Paenibacillus strains isolated from honey. Rev Argent Microbiol 36:52–55

    PubMed  CAS  Google Scholar 

  • Rodríguez-Díaz M, Lebbe L, Rodelas B, Heyrman J, De Vos P, Logan NA (2005) Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int J Syst Evol Microbiol 55:2093–2099

    PubMed  Google Scholar 

  • Rosado AS, Seldin L (1993) Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World J Microbiol Biotechnol 90:521–528

    Google Scholar 

  • Rosado AS, Seldin L, Wolters AC, van Elsas JD (1996) Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere. FEMS Microbiol Ecol 19:153–164

    CAS  Google Scholar 

  • Rosado AS, van Elsas JD, Seldin L (1997) Reclassification of Paenibacillus durum (formerly Clostridium durum, Smith and Cato 1974) Collins et al. 1994 as a member of the species P. azotofixans (formerly Bacillus azotofixans Seldin et al. 1984) Ash et al. 1994. Int J Syst Bacteriol 47:569–572

    PubMed  CAS  Google Scholar 

  • Rosado AS, de Azevedo FS, da Cruz DW, van Elsas JD, Seldin L (1998a) Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J Appl Bacteriol 84:216–226

    Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, van Elsas JD (1998b) Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779

    PubMed  CAS  Google Scholar 

  • Roux V, Raoult D (2004) Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54:1049–1054

    PubMed  CAS  Google Scholar 

  • Sakiyama CCH, Paula EM, Pereira PC, Borges AC, Silva DO (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33:117–121

    PubMed  CAS  Google Scholar 

  • Santos SCC, Coelho MRR, Seldin L (2002) Evaluation of the diversity of Paenibacillus polymyxa strains by using the DNA of bacteriophage IPy1 as a probe in hybridization experiments. Lett Appl Microbiol 35:52–56

    PubMed  Google Scholar 

  • Seldin L, Penido EGC (1986) Identification of Bacillus azotofixans using API tests. Antonie van Leeuwenhoek 52:403–409

    PubMed  CAS  Google Scholar 

  • Seldin L, Penido EGC (1990) Production of a bacteriophage, a phage tail-like bacteriocin and an antibiotic by Bacillus azotofixans. Ann Acad Bras Ci 62:85–94

    CAS  Google Scholar 

  • Seldin L, van Elsas JD, Penido EGC (1983) Bacillus nitrogen fixers from Brazilian soils. Plant Soil 70:243–255

    Google Scholar 

  • Seldin L, van Elsas JD, Penido EGC (1984) Bacillus azotofixans sp. nov., a nitrogen-fixing species from brazilian soils and grass roots. Int J Syst Bacteriol 34:451–456

    CAS  Google Scholar 

  • Seldin L, Bastos MCF, Penido EGC (1989) Identification of Bacillus azotofixans nitrogen fixation genes using heterologous nif probes. In: Skinner FA et al (eds) Nitrogen fixation with non-legumes. Kluwer Academic, Dordrecht, The Netherlands, pp 179–187

    Google Scholar 

  • Seldin L, Rosado AS, Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere and non-rhizosphere soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    PubMed  CAS  Google Scholar 

  • Seldin L, de Azevedo FS, Alviano DS, Alviano CS, Bastos MCF (1999) Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic micro-organisms. Lett Appl Microbiol 28:423–427

    PubMed  CAS  Google Scholar 

  • Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507

    PubMed  CAS  Google Scholar 

  • Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196

    CAS  Google Scholar 

  • Silva KRA, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Methods 54:213–231

    PubMed  Google Scholar 

  • Silva V, da Silva LES, Martínez CR, Seldin L, Burity HA, Figueiredo MVB (2007) Strains of Paenibacillus promoters of the specific nodulation in the symbiosis Bradyrhizobium-caupi. Acta Sci Agron 29:331–338

    Google Scholar 

  • Takano T, Fukada M, Monma M, Kobayashi S, Kainuma K, Yamane K (1986) Molecular cloning, DNA nucleotide sequencing, and expression in Bacillus subtilis cells of the Bacillus macerans cyclodextrin glucanotransferase gene. J Bacteriol 166:1118–1122

    PubMed  CAS  Google Scholar 

  • Teixeira RLF, von der Weid I, Seldin L, Rosado AS (2008) Differential expression of nifH and anfH genes in Paenibacillus durus analyzed by RT-PCR and DGGE. Lett Appl Microbiol 46:344–349

    PubMed  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    PubMed  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    PubMed  CAS  Google Scholar 

  • Timmusk S, van West P, Gow NA, Huffstutler RP (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    PubMed  CAS  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    PubMed  CAS  Google Scholar 

  • Tupinambá G, Alviano CS, da Silva AJR, Souto-Padron TCBS, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against mycotoxin-producing fungi. J Appl Microbiol 105:1044–1053

    PubMed  Google Scholar 

  • Vandeputte O, Oden S, Mol A, Vereeke D, Goethals K, Jaziri M, Prinsen E (2005) Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71:1169–1177

    PubMed  CAS  Google Scholar 

  • Vollú RE, Santos SCC, Seldin L (2003) 16S rDNA targeted PCR for the detection of Paenibacillus macerans. Lett Appl Microbiol 37:415–420

    PubMed  Google Scholar 

  • Vollú RE, Fogel R, Santos SCC, da Mota FF, Seldin L (2006) Evaluation of the diversity of cyclodextrin-producing Paenibacillus graminis strains by different molecular methods. J Microbiol 44:591–599

    PubMed  Google Scholar 

  • von der Weid I, Paiva E, Nóbrega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381

    PubMed  Google Scholar 

  • von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153

    PubMed  Google Scholar 

  • von der Weid I, Alviano DS, Santos ALS, Soares RMA, Alviano CS, Seldin L (2003) Antimicrobial activity of Paenibacillus peoriae against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1143–1151

    PubMed  Google Scholar 

  • von der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World J Microbiol Biotech 21:1591–1597

    Google Scholar 

  • Walker R, Powel AA, Seddon B (1998) Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J Appl Microbiol 84:791–801

    PubMed  CAS  Google Scholar 

  • Wartiainen I, Eriksson T, Zheng W, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy – nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75

    Google Scholar 

  • Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at Douglas fir forest site in the Oregon cascade mountain range. Appl Environ Microbiol 65:374–380

    PubMed  CAS  Google Scholar 

  • Witz DF, Detroy EW, Wilson PW (1967) Nitrogen fixation by growing cells and cell-free extracts of the Bacillaceae. Arch Microbiol 55:369–381

    CAS  Google Scholar 

  • Yao WL, Wang YS, Han JG, Li LB, Song W (2004) Purification and cloning of an antifungal protein from the rice diseases controlling bacterial strain Paenibacillus polymyxa WY110. Yi Chuan Xue Bao 31:878–887

    PubMed  CAS  Google Scholar 

  • Zehr J, McReynolds L (1989) Use of degenerate oligonucleotide primers for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    PubMed  CAS  Google Scholar 

  • Zhao H, Xie B, Chen S (2006) Cloning and sequencing of nifBHDKENX genes of Paenibacillus massiliensis T7 and its nif promoter analysis. Sci China C Life Sci 49:115–122

    PubMed  CAS  Google Scholar 

  • Zhou WW, Huang JX, Niu TG (2008) Isolation of an antifungal Paenibacillus strain HT16 from locusts and purification of its medium-dependent antagonistic component. J Appl Microbiol 105:912–919

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy Seldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seldin, L. (2011). Paenibacillus, Nitrogen Fixation and Soil Fertility. In: Logan, N., Vos, P. (eds) Endospore-forming Soil Bacteria. Soil Biology, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19577-8_15

Download citation

Publish with us

Policies and ethics