Skip to main content

Turbulence

  • Chapter
  • First Online:
The Pi-Theorem

Part of the book series: Experimental Fluid Mechanics ((FLUID,volume 1))

  • 2306 Accesses

Abstract

The turbulence represents itself a very complicated hydrodynamic phenomenon characterized by irregular unsteady fluid motion. It emerges in liquid and gas flows at sufficiently high Reynolds numbers when laminar flow regime becomes unstable and strongly perturbed. This process is accompanied by arising turbulent eddies of different sizes which are, in their turn, sources of velocity disturbances at each point of the flow field. The amplitudes and frequencies of such disturbances depend on the Reynolds number value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, (8.58) should be written as: \( dP/dx = f(u,{d_{{ef}}},\mu, \rho, {k_s},{a_1},{a_2} \cdot \cdot \cdot {a_i}),\;where\;{a_1},{a_2} \cdot \cdot \cdot {a_i} \) are the parameters characterizing the shape and distribution of rough elements on the surface.

References

  • Abramovich GN (1963) Theory of turbulent jets. MTI Press, Boston

    Google Scholar 

  • Abramovich GN, Krasheninnikov SYu, Sekundov AN, Smirnova IP (1974) Turbulent mixing of Gas jets. Nauka, Moscow (in Russian)

    Google Scholar 

  • Abramovich GN, Girshovich TA, Krasheninnikov SYu, Sekundov AN, Smirnova IP (1984) Theory of turbulent jets. Nauka, Moscow (in Russian)

    MATH  Google Scholar 

  • Andreopoulos J, Rodi W (1985) On the structure of jets in crossflow. J Fluid Mech 138:93–127

    Article  Google Scholar 

  • Antonia RA, Prabhu A, Stephenson SE (1975) Conditionally sampled measurements in a heated turbulent jet. J Fluid Mech 72:455–480

    Article  Google Scholar 

  • Antonia RA, Bigler RW (1973) An experimental investigation of an axisymmetric jet in co-flowing air stream. J Fluid Mech 61:805–822

    Article  Google Scholar 

  • Banks RB, Chandrasekhara DV (1963) Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J Fluid Mech 15:13–34

    Article  Google Scholar 

  • Barenblatt GI (1996) Similarity, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bergstrom DJ, Tachie MF (2001) Application of power laws to low Reynolds number boundary layers on smooth and rough surfaces. Phys Fluids 13:3277–3284

    Article  Google Scholar 

  • Bradbury LJS, Riley J (1967) The spread of turbulent plane jet issuing into a parallel moving airstream. J Fluid Mech 27:381–394

    Article  Google Scholar 

  • Chassaing P, George J, Claria A, Sananes F (1974) Physical characteristics of subsonic jets in a cross-stream. J Fluid Mech 62:41–64

    Article  Google Scholar 

  • Cheslak FR, Nicholles JA, Sichel M (1969) Cavities formed on liquid surfaces by impinging gas jets. J Fluid Mech 36:55–63

    Article  Google Scholar 

  • Chevray R, Tutu NK (1978) Intermittency and preferential transport of heat in a round jet. J Fluid Mech 88:133–160

    Article  Google Scholar 

  • Chua LP, Antonia RA (1990) Turbulent Prandtl number in a circular jet. Int J Heat Mass Transf 33:331–339

    Article  Google Scholar 

  • Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech 56:1–51

    Article  Google Scholar 

  • Coles D (1955) The law of the wall in turbulent shear flow, 50 jahre grenzschicht-forschung. Vieweg, Braunschweig, pp 153–163

    Google Scholar 

  • Corrsin S, Uberoi MS (1950) Further experiments on the flow and heat transfer in a heated turbulent air jet. NACA Report 998, NACA - TN - 1865

    Google Scholar 

  • Doweling DR, Dimotakis PE (1990) Similarity of the concentration field of gas-phase turbulent jet. J Fluid Mech 218:109–141

    Article  Google Scholar 

  • Everitt KM, Robins AG (1978) The development and structure of turbulent plane jets. J Fluid Mech 88:563–583

    Article  Google Scholar 

  • Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47

    Article  Google Scholar 

  • Forstall W, Gaylord EW (1955) Momentum and mass transfer in submerged water jets. J Appl Mech 22:161–171

    Google Scholar 

  • George WK, Abrahamsson H, Eriksson J, Karlsson RI, Lofdahl L, Wosnik M (2000) A similarity theory for the turbulent plane wall jet without external stream. J Fluid Mech 425:367–411

    Article  MATH  Google Scholar 

  • Gutmark E, Wygnanski I (1976) The planar turbulent jet. J Fluid Mech 73:465–495

    Article  Google Scholar 

  • Gutmark E, Wolfshtein M, Wygnanski I (1978) The plane turbulent impinging jet. J Fluid Mech 88:737–756

    Article  Google Scholar 

  • Hasselbrink EF, Mungal MG (2001) Transverse jet and jet features. Part 1. Scaling laws for strong transverse jets. J Fluid Mech 443:1–25

    MATH  Google Scholar 

  • Herwig H, Gloss D, Wenterodt T (2008) A new approach to understanding and modeling the influence of wall roughness on friction factors for pipe and channel flows. J Fluid Mech 613:35–53

    Article  MATH  Google Scholar 

  • Hinze JO (1975) Turbulence, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Karlsson RI, Eriksson JE, Persson J (1993) LDV measurements in a plane wall jet in large enclosure. In: proceeding of the 6th International symposium on applications of laser techniques to fluid mechanics, 20–23 July. Lisabon, Portugal, paper 1:5

    Google Scholar 

  • von Karman Th (1930) Mechanische Ahnlichkeit und Turbulenz. Nachr Ges Wiss Gottingen Math Phys Klasse 58:271–286

    Google Scholar 

  • von Karman Th, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc Roy Soc A 164:192–215

    Article  Google Scholar 

  • Keffer JF, Baines WD (1963) The round turbulent jet in a cross wind. J Fluid Mech 15:481–496

    Article  MATH  Google Scholar 

  • Kelso RM, Lim TT, Perry AE (1996) An experimental study of round jets in cross-flow. J Fluid Mech 306:111–144

    Article  Google Scholar 

  • Kolmogorov AN (1941a) Local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. DAN SSSR 30(4):299–303, in Russian

    Google Scholar 

  • Kolmogorov AN (1941b) Disperse energy at local isotropic turbulence. DAN SSSR 32(1):19–21

    Google Scholar 

  • Landau LD, Lifshitz EM (1979) Fluid mechanics, 2nd edn. Pergamon, London

    Google Scholar 

  • Launder BE, Rodi W (1981) The turbulent wall jet. Prog Aerospace Sci 19:81–128

    Article  Google Scholar 

  • Launder BE, Rodi W (1983) The turbulent wall jet-measurement and modeling. Annu Rev Fluid Mech 15:429–459

    Article  Google Scholar 

  • Lockwood FC, Moneib HA (1980) Fluctuating temperature measurements in a heated round free jet. Comb Sci Tech 22:63–81

    Article  Google Scholar 

  • Loitsyanskii LG (1939) Some fundamental laws of isotropic turbulent flow. Trans TZAGI 440:3–23

    Google Scholar 

  • Maczynski JFJ (1962) A round jet in an ambient co-axial stream. J Fluid Mech 13:597–608

    Article  MATH  Google Scholar 

  • Mayer E, Divoky D (1966) Correlation of intermittency with preferential transport of heat and chemical species in turbulent shear flows. AIAA J 4:1995–2000

    Google Scholar 

  • Moussa ZM, Trischka JW, Eskinazi S (1977) The near field in the mixing of a round jet with a cross-stream. J Fluid Mech 80:49–80

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1965-Part 1, 1967-Part 2) Statistical fluid dynamics (in Russian). Nauka. Moscow (English Translation, 1971, MIT Press, Boston)

    Google Scholar 

  • Narasimha R, Narayan KY, Parthasarathy SP (1973) Parametric analysis of turbulent wall jets in still air. Aeronautical J 77:335–359

    Google Scholar 

  • Nickels TB, Perry AE (1996) An experimental and theoretical study of the turbulent co-flowing jet. J Fluid Mech 309:157–182

    Article  MathSciNet  Google Scholar 

  • Obukhov AM (1941) On energy distribution in the spectrum of turbulent flow. Izv AN SSSR Ser Geogr Geoph 5(4–5):453–466, in Russian

    Google Scholar 

  • Obukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv AN SSSR Ser Geogr Geoph 13:58–69 (in Russian)

    Google Scholar 

  • Panchapakesan NR, Lumley JL (1993) Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J Fluid Mech 246:225–247

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Prandtl L (1925a) Uber die ausgeloildete Turbulenz. ZAMM 5:136–139

    MATH  Google Scholar 

  • Prandtl L (1942) Bemerkungen zur Theorie der freien Turbulenz. ZAMM 22:241–243

    Article  MathSciNet  Google Scholar 

  • Prandtl L (1925b) Bericht uber Untersuchungen zur ausgebildeten Turbulenz. ZAMM 5:136–139

    MATH  Google Scholar 

  • Rotta JC (1962) Turbulent boundary layers in incompressible flow. In: Ferri A, Kuchemann D, Sterne LHG (eds) Progress in aeronautical sciences vol 2. pp 1–219, Pergamon Press

    Google Scholar 

  • Sakipov ZB (1961) On the ratio of the coefficients of turbulent exchange of momentum and heat in free turbulent jet. Izv AN Kaz, SSR, 19

    Google Scholar 

  • Sakipov ZB, Temirbaev DZ (1962) On the ratio of the coefficient of turbulent exchange of momentum and heat in free turbulent jet of mercury. Izv AN Kaz, SSR, 22

    Google Scholar 

  • Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Sedov LI (1993) Similarity and dimensional methods in mechanics 10th edn CRC Press, Boca Raton

    Google Scholar 

  • Shin T-H, Lumley JL, Jonicka J (1982) Second-order modeling of a variable-density mixing layer. J Fluid Mech 180:93–116

    Google Scholar 

  • Smith SH, Mungal MG (1998) Mixing structure and scaling of the jet in cross-flow. J Fluid Mech 357:83–122

    Article  Google Scholar 

  • Tachie MF, Balachander R, Bergstrom DJ (2004) Roughness effects on turbulent plane wall jets in an open channel. Exp Fluids 37(2):281–292

    Article  Google Scholar 

  • Taylor GI (1932) The transport of vorticity and heat through fluids in turbulent motion. Proc Roy Soc London A 135:685–705

    Article  Google Scholar 

  • Townsend AA (1956) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Vilis LA, Kashkarov VP (1965) The theory of viscous fluid jets. Nauka, Moscow (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yarin, L.P. (2012). Turbulence. In: The Pi-Theorem. Experimental Fluid Mechanics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19565-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19565-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19564-8

  • Online ISBN: 978-3-642-19565-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics