Skip to main content

Drag Force Acting on a Body Moving in Viscous Fluid

  • Chapter
  • First Online:

Part of the book series: Experimental Fluid Mechanics ((FLUID,volume 1))

Abstract

Drag force is one of the most important factors that determine dynamics of solid bodies moving in viscous fluids. The knowledge of this force is essential for a number of applications in engineering, in particular, for the evaluation the engine power to ensure a desirable velocity of the airplanes, ships, etc., as well as for analyzing the behavior of solid particles, droplets and bubbles in two-phase flows. Numerous experimental and theoretical investigations dealing with drag of bodies of different shapes moving with low and high velocities in viscous fluid were performed during the last three centuries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here \( {d_{ * }} \) is characteristic size of the body which is fully determined by its shape.

References

  • Anton TR (1987) The lift force on a spherical body in rotation flow. J Fluid Mech 183:199–218

    Article  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Basset AB (1961) A treatise on hydrodynamics, vol 2. Dover, New York

    Google Scholar 

  • Bearman PW, Dowirie MJ, Graham JMP, Obasaju ED (1985) Forces on cylinders in viscous oscillatory flow at low Kenlegan-Carpenter numbers. J Fluid Mech 154:337–356

    Article  MATH  Google Scholar 

  • Berlemont A, Desjonqueres P, Gouesbet G (1990) Particle Lagrangian simulation in turbulent flow. Int J Multiphas Flow 16:19–34

    Article  MATH  Google Scholar 

  • Boothroyd RG (1971) Following gas-solids suspensions. Chapman and Hall, London

    Google Scholar 

  • Boussinesq J (1903) Theorie Analytique de la Chaleur. L’ Ecole Polytechnique, Paris

    Google Scholar 

  • Bridgman PW (1922) Dimensional analysis. Yale University Press, New Haven

    Google Scholar 

  • Chang EJ, Maxey MR (1994) Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion. J Fluid Mech 277:347–379

    Article  MATH  Google Scholar 

  • Chang EJ, Maxey MR (1995) Unsteady flow about a sphere at low to moderate Reynolds number. Part 2. Accelerated motion. J Fluid Mech 303:133–153

    Article  MATH  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, droplets and particles. Academic, New York

    Google Scholar 

  • Dandy DS, Dwyer HA (1990) A sphere in shear flows at finite Reynolds number: effect of shear on particle lift, drag and heat transfer. J Fluid Mech 216:821–828

    Article  Google Scholar 

  • Derjaguin BM, Levi SM (1964) Film coating theory. The Focal Press, London

    Google Scholar 

  • Dwyer HA (1989) Calculation of droplet dynamics in high temperature environments. Prog Energ Combust Sci 15:131–158

    Article  Google Scholar 

  • Fendell FE, Sprankle ML, Dodson DS (1966) Thin-flame theory for a fuel drop in slow viscous flow. J Fluid Mech 26:267–280

    Article  MATH  Google Scholar 

  • Graham JMR (1980) The forces on sharp-edged cylinders in oscillatory flow at low Kenlegan-Carpenter numbers. J Fluid Mech 97:331–346

    Article  Google Scholar 

  • Hadamard JS (1911) Movement permanent lend d’une sphere liquid et visqueuse dans un liquid visqueux. C.R. ACAD Sci Paris 152:1735–1738

    MATH  Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoft, The Hague

    Google Scholar 

  • Huntley HE (1967) Dimensional analysis. Dover Publications, New York

    Google Scholar 

  • Karanfilian SK, Kotas TJ (1978) Drag on sphere in steady motion in a liquid at rest. J Fluid Mech 87:85–96

    Article  Google Scholar 

  • Kassoy DR, Adamson TC, Messiter AF (1966) Compressible low Reynolds number flow around a sphere. Phys Fluids 9:671–681

    Article  MATH  Google Scholar 

  • Kenlegan GH, Carpenter LH (1958) Forces on cylinders and plates in an oscillating fluid. J Res Nat Bur Standard 60:423–440

    Google Scholar 

  • Lamb H (1959) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid mechanics, 2nd edn. Pergamon, New York

    Google Scholar 

  • Landau LD, Levich VG (1942) Dragging of a liquid by moving plate. Acta Physicochimica USSR 17:42–54

    Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Loitsyanskii LG (1967) Laminar Grenzschichten. Academic-Verlag, Berlin

    Google Scholar 

  • Loitsyanskii LG (1966) Mechanics of liquids and gases. Pergamon, Oxford

    Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:863–888

    Article  Google Scholar 

  • McLaughlin JB (1991) Inertia migration of small sphere in linear shear flows. J Fluid Mech 224:261–274

    Article  MATH  Google Scholar 

  • Mei R, Lawrence CJ, Adrian RJ (1991) Unsteady drag on sphere of finite Reynolds number with small fluctuations of the free stream velocity. J Fluid Mech 223:613–631

    Article  Google Scholar 

  • Mei R (1992) An approximate expression for the shear lift force on a spherical particle at the finite Reynolds number. Int J Multiphas Flow 18:145–147

    Article  MATH  Google Scholar 

  • Mei R (1994) Flow due to an oscillating sphere: an expression for unsteady drag on the sphere at finite Reynolds number. J Fluid Mech 270:133–174

    Article  MATH  Google Scholar 

  • Odar F, Hamilton WS (1964) Forces on a sphere accelerating in viscous fluid. J Fluid Mech 18:302–314

    Article  MATH  Google Scholar 

  • Oseen CW (1910) Uber die Stokes’ Formuel, und uber eine verwen die Aufgabe in der Hydrodynamik. Ark Mth Astronom Fus 6(29):1–20

    Google Scholar 

  • Oseen CW (1927) Hydrodynamik. Akademise Verlagsgesellichaft, Leipzig

    MATH  Google Scholar 

  • Rybchynski W (1911) Uber die fortschreitendl Bewegung einer flussingen Kugelin einem Zahen Medium. Bull Inst Acad Sci Cracovie ser. A 1:40–46

    Google Scholar 

  • Saffman PS (1965) The lift on small sphere in a shear flow. J Fluid Mech 22:385–400

    Article  MATH  Google Scholar 

  • Saffman PS (1968) Corrigendum to ‘the lift on a small sphere in a slow shear flow’. J Fluid Mech 31:624–624

    Article  Google Scholar 

  • Schlichting H (1979) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Sedov LI (1993) Similarity and dimensional methods in mechanics, 10th edn. CRC Press, Boca Raton

    Google Scholar 

  • Shih CC, Buchanan HJ (1971) The drag on oscillating flat plates in liquids at low Reynolds numbers. J Fluid Mech 48:229–239

    Article  Google Scholar 

  • Soo SL (1990) Multiphase fluid dynamics. Science Press and Gower Technical, Beijing

    Google Scholar 

  • Stokes GC (1851) On the effect of internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9:8–106

    Google Scholar 

  • Yalin MS (1972) Mechanics of sediment transport. Pergamon Press, Oxford

    Google Scholar 

  • Yarin LP, Hetsroni G (2004) Combustion of two-phase reactive media. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yarin, L.P. (2012). Drag Force Acting on a Body Moving in Viscous Fluid. In: The Pi-Theorem. Experimental Fluid Mechanics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19565-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19565-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19564-8

  • Online ISBN: 978-3-642-19565-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics