Image Authentication Using Active Watermarking and Passive Forensics Techniques

  • Xi Zhao
  • Philip Bateman
  • Anthony T. S. Ho
Part of the Studies in Computational Intelligence book series (SCI, volume 346)


The primary reason for the requirement of authenticating images stems from the increasing amount of doctored images that are presented as accurate representations of real-life events, but are later discovered to be faked. The history of manipulating images reaches back almost as far as photography itself, and with the ease of use and availability of image editing software, it has become ubiquitous in the digital age. Image authentication schemes attempt to restore trust in the image by accurately validating the data, positively or negatively.


Discrete Cosine Transform Control Chart Watermark Image Watermark Scheme Statistical Process Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vrusias, B., Tariq, M., Handy, C., et al.: Forensic Photography. In Technical Report, University of Surrey, Computing Dept. (2001)Google Scholar
  2. 2.
    Ho, A.T.S.: Semi-fragile Watermarking and Authentication for Law Enforcement Applications. In: Innovative Computing, Information and Control (ICICIC 2007), pp. 286–286 (2007)Google Scholar
  3. 3.
    Zheng, D., Liu, Y., Zhao, J., et al.: A survey of RST invariant image watermarking algorithms. ACM Computing Surveys 39(2) (2007)Google Scholar
  4. 4.
    Cox, I.J., Miller, M.L., Bloom, J.A., et al.: Digital watermarking and Steganography, 2nd edn. Morgan Kaufmann, USA (2008), ISBN: 0123725852Google Scholar
  5. 5.
    Li, C.T., Si, H.: Wavelet-based Fragile Watermarking Scheme for Image Authentication. Journal of Electronic Imaging 16, 130091–130099 (2007)Google Scholar
  6. 6.
    Li, C.T., Yuan, Y.: Digital Watermarking Scheme Exploiting Non-deterministic Dependence for Image Authentication. Optical Engineering 45(12), 127001–127001 (2006)CrossRefGoogle Scholar
  7. 7.
    Ho, A.T.S., Zhu, X., Guan, Y.: Image content authentication using pinned sine transform. EURASIP Journal on Applied Signal Processing, 2174–2184 (2004)Google Scholar
  8. 8.
    Lin, C.H., Su, T.S., Hsieh, W.S.: Semi-fragile watermarking Scheme for authentication of JPEG Images. Tamkang Journal of Science and Engineering 10(1), 57–66 (2007)Google Scholar
  9. 9.
    Lin, H.Y.S., Liao, H.Y.M., Lu, C.H., et al.: Fragile watermarking for authenticating 3-D polygonal meshes. IEEE Trans. Multimedia 7(6), 997–1006 (2005)CrossRefGoogle Scholar
  10. 10.
    Rey, C., Dugelay, J.L.: A survey of watermarking algorithms for image authentication. EURASIP Journal on Applied Signal Processing (6), 613–621 (2002)Google Scholar
  11. 11.
    Bartolini, F., Tefas, A., Barni, M., et al.: Image authentication techniques for surveillance applications. Proc. of IEEE 89(10), 1403–1418 (2001)CrossRefGoogle Scholar
  12. 12.
    Lin, C.Y., Chang, S.F.: Semi-Fragile Watermarking for Authenticating JPEG Visual Content. In: Proc. SPIE Security and Watermarking of Multimedia Contents II EI 2000, pp. 140–151 (2000)Google Scholar
  13. 13.
    Lin, E.T., Podilchuk, C.I., Delp, J.: Detection of Image Alterations using semi-fragile watermarks. In: Proc. SPIE International Conference on Security and Watermarking of Multimedia Contents II, vol. 3971, pp. 152–163 (2000)Google Scholar
  14. 14.
    Zou, D., Shi, Y.Q., Ni, Z., et al.: A Semi-Fragile Lossless Digital Watermarking Scheme Based on Integer Wavelet Transform. IEEE Trans. Circuits and Systems for Video Technology 16(10), 1294–1300 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhu, X.Z., Ho, A.T.S., Marziliano, P.: A new semi-fragile image watermarking with robust tampering restoration using irregular sampling. Elsevier Signal Processing: Image Communication 22(5), 515–528 (2007)CrossRefGoogle Scholar
  16. 16.
    Zhu, Y., Li, C.T., Zhao, H.J.: Structural digital signature and semi-fragile fingerprinting for image authentication in wavelet domain. In: Proc. Third International Symposium on Information Assurance and Security, pp. 478–483 (2007)Google Scholar
  17. 17.
    Yu, G.J., Lu, C.S., Liao, H.Y.M., et al.: Mean quantization blind watermarking for image authentication. In: Proc. IEEE International Conference on Image Processing, vol. 3, pp. 706–709 (2000)Google Scholar
  18. 18.
    Kundur, D., Hatzinakos, D.: Digital watermarking for telltale tamper proofing and authentication. Proc. IEEE 87(7), 1167–1180 (1999)CrossRefGoogle Scholar
  19. 19.
    Fu, D., Shi, Y.Q., Su, Q.: A generalized Benford’s law for JPEG coefficients and its applications in image forensics. In: Proc. SPIE Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505 (2007)Google Scholar
  20. 20.
    Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification From Sensor Pattern Noise. IEEE Trans. on Information Security and Forensics 1(2), 205–214 (2006)CrossRefGoogle Scholar
  21. 21.
    Johnson, M.K., Farid, H.: Detecting photographic composites of people. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 19–33. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Khanna, N., Mikkilineni, A.K., Delp, E.J.: Forensic Camera Classification: Verification of Sensor Pattern Noise Approach. Forensic Science Communications (FSC) 11(1) (2009)Google Scholar
  23. 23.
    Fridrich, J.: Security of fragile authentication watermarks with localization. In: Proc. SPIE, Security and Watermarking of Multimedia Contents IV, vol. 4675, pp. 691–700 (2002)Google Scholar
  24. 24.
    Wong, P.: A Watermark for Image Integrity and Ownership Verification. In: Proc. IS and T PIC (1998)Google Scholar
  25. 25.
    Zhang, X., Wang, S.: Statistical Fragile Watermarking Capable of Locating Individual Tampered Pixels. IEEE Signal Processing Letters 14, 727–730 (2007)CrossRefGoogle Scholar
  26. 26.
    Zhang, X., Wang, S.: Fragile Watermarking With Error-Free Restoration Capability. IEEE Transactions on Multimedia 10, 1490–1499 (2008)CrossRefGoogle Scholar
  27. 27.
    He, H.J., Zhang, J.S., Chen, F.: Adjacent-block based statistical detection method for self-embedding watermarking techniques. IEEE Signal Processing 89(8), 1557–1566 (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Aslantas, V., Ozer, S., Ozturk, S.: Improving the performance of DCT-based fragile watermarking using intelligent optimization algorithms. Opt. Commun. 282(14), 2806–2817 (2009)CrossRefGoogle Scholar
  29. 29.
    Yeh, F., Lee, G.: Pyramid-structure-based reversible fragile watermarking. Optical Engineering 48(4), 470011–4700111 (2009)CrossRefGoogle Scholar
  30. 30.
    Ni, Z., Shi, Y.Q., Ansari, N., et al.: Robust Lossless Image Data Hiding Designed for Semi-Fragile Image Authentication. IEEE Trans. on Circuits and Systems for Video Technology (4), 497–509 (2008)Google Scholar
  31. 31.
    Lin, E.T., Podilchuk, C.I., Delp, E.J.: Detection of image alterations using semi-fragile watermarks. In: Proc. of Security and Watermarking of Multimedia Contents, vol. 3971, pp. 152–163. SPIE, CA (2000)Google Scholar
  32. 32.
    Lee, H., Rhee, K.: Reversible data embedding for tamper-proof watermarks. In: Innovative Computing, Information and Control (ICICIC 2006), vol. 3, pp. 487–490 (2006)Google Scholar
  33. 33.
    Fridrich, J., Goljan, M.: Images with self-correcting capabilities. In: IEEE International Conference on Image Processing, vol. 3, pp. 792–796 (1999)Google Scholar
  34. 34.
    Maeno, K., Sun, Q., Chang, S., et al.: New Semi-fragile image authentication watermarking techniques using random bias and nonuniform quantization. IEEE Trans. Multimedia 8(1), 32–45 (2006)CrossRefGoogle Scholar
  35. 35.
    Ding, K., He, C., Jiang, L.G., et al.: Wavelet-Based Semi-Fragile Watermarking with Tamper Detection. IEICE Transactions on Fundamentals of Electronics 88(3), 787–790 (2005)CrossRefGoogle Scholar
  36. 36.
    Zhao, X., Ho, A.T.S., Treharne, H., et al.: A Novel Semi-Fragile Image Watermarking, Authentication and Self-Restoration Technique Using the Slant Transform. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP 2007), vol. 1, pp. 283–286 (2007)Google Scholar
  37. 37.
    Pratt, W., Chen, W.H., Welch, L.: Slant transform image coding. IEEE Trans. on Communications 22(8), 1075–1093 (1974)CrossRefGoogle Scholar
  38. 38.
    Zhu, X., Ho, A.T.S.: A slant transform watermarking for copyright protection of satellite images. In: Fourth Pacific Rim Conference on Multimedia, vol. 2, pp. 1178–1181 (2003)Google Scholar
  39. 39.
    Hou, Z., Xu, N., Chen, H., et al.: Fast slant transform with sequency increment and its application in image compression. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4085–4089 (2004)Google Scholar
  40. 40.
    Zhao, X., Ho, A.T.S., Shi, Y.Q.: Image forensics using generalised Benford’s Law for accurate detection of unknown JPEG compression in watermarked images. In: 16th International Conference on Digital Signal Processing, DSP 2009 (2009), doi:10.1109/ICDSP.2009.5201261Google Scholar
  41. 41.
    Benford, F.: The law of anomalous numbers. Proc. American Philosophical Society 78, 551–572 (1938)Google Scholar
  42. 42.
    Hill, T.P.: The significant-Digit Phenomenon. American Mathematical Monthly 102, 322–327 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Durtschi, C., Hillison, W., Pacini, C.: The effective use of Benfords Law to assist in detecting fraud in accounting data. Journal of Forensic Accounting v, 17–34 (2004)Google Scholar
  44. 44.
    Nigrini, M.J.: Ive got your number. Journal of Accountancy (1999)Google Scholar
  45. 45.
    Jolion, J.M.: Images and Benfords Law. Journal of Mathematical Imaging and Vision 14, 73–81 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Perez-Gonzalez, F., Heileman, G.L., Abdallah, C.T.: Benford’s Law in Image Processing. In: Proc. IEEE International Conference on Image Processing, vol. 1, pp. 405–408 (2007)Google Scholar
  47. 47.
    Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In: Proc. SPIE, Storage and Retrieval Methods and Applications for Multimedia, pp. 472–480 (2004)Google Scholar
  48. 48.
    Mitchell, M.J.: The Reconfigured Eye, pp. 204–208. MIT Press, Cambridge (1992), ISBN: 978-0262631600Google Scholar
  49. 49.
    Gearadts, Z.J., Bijhold, J., Kieft, M., et al.: Methods for Identification of Images Acquired with Digital Cameras, vol. 4232, pp. 505–512. SPIE Press, CA (2001)Google Scholar
  50. 50.
    Choi, K.S., Lam, E.Y., Wong, K.K.Y.: Source Camera Identification Using Footprints From Lens Aberration. In: Proc. SPIE Electronic Imaging, vol. 6069, pp. 172–179 (2006)Google Scholar
  51. 51.
    Lukáš, J., Fridrich, J., Goljan, M.: Digital “Bullet Scratches” for Images. In: IEEE International Conference on Image Processing, vol. 3, pp. 65–68 (2005)Google Scholar
  52. 52.
    Lukáš, J., Fridrich, J., Goljan, M.: Detecting Digital Image Forgeries using Sensor Pattern Noise. In: Proc. SPIE Electronic Imaging, vol. 6072, pp. 362–372 (2006)Google Scholar
  53. 53.
    Farid, H.: Seeing Is Not Believing. IEEE Spectrum 46, 42–47 (2009)CrossRefGoogle Scholar
  54. 54.
    DeVor, R.E., Chang, T., Sutherland, J.: Statistical Quality Design and Control: Contemporary Concepts and Methods. Prentice Hall, Englewood Cliffs (1992), ISBN: 978-0023291807Google Scholar
  55. 55.
    Shewhart, A.W.: Economic Control of Quality of Manufactured Product. American Society for Quality (1931), ISBN: 978-0873890762Google Scholar
  56. 56.
    Ford Motor Company, Continuing Process Control and Process Capability Improvement. Manual Published by Statistical Methods Office (1984)Google Scholar
  57. 57.
    Ho, A.T.S., Henriksson, C.: Improving Product Quality in a Pulp Mill Using Statistical Process Control (SPC). In: IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1139–1143 (1993)Google Scholar
  58. 58.
    Ho, A.T.S., Henriksson, C.: Improvement of Product Uniformity Using Statistical Process Control (SPC) in a BCTMP Mill. Pulp and Paper Canada 95, 37–40 (1994)Google Scholar
  59. 59.
    Guillory, A.L.: Statistical Process Control in a Paper Mill. Chemical Engineering Progress 84, 52–57 (1988)Google Scholar
  60. 60.
    Benneyan, J.C., Lloyd, R.C., Plsek, P.E.: Statistical Process Control as a Tool for Research and Healthcare Improvement. Qual. Saf. Health Care 12, 458–464 (2003)CrossRefGoogle Scholar
  61. 61.
    Bateman, P., Ho, A.T.S., Woodward, A.: Camera Identification using Statistical Process Control Techniques for Anomaly Detection. Accepted for International Conference on Information, Communications, and Signal Processing (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xi Zhao
    • 1
  • Philip Bateman
    • 1
  • Anthony T. S. Ho
    • 1
  1. 1.University of SurreyUK

Personalised recommendations