Robust Image Watermarking Based on Feature Regions

  • Cheng Deng
  • Xinbo Gao
  • Xuelong Li
  • Dacheng Tao
Part of the Studies in Computational Intelligence book series (SCI, volume 346)


In image watermarking, binding the watermark synchronization with the local features has been widely used to provide robustness against geometric distortions as well as common image processing operations. However, in the existing schemes, the problems with random bending attack, nonisotropic scaling, general affine transformation, and combined attacks still remain difficult. In this chapter, we present and discuss the framework of the extraction and selection of the scale-space feature points. We then propose two robust image watermarking algorithms through synchronizing watermarking with the invariant local feature regions centered at feature points. The first algorithm conducts watermark embedding and detection in the affine covariant regions (ACRs). The second algorithm is combining the local circular regions (LCRs) with Tchebichef moments, and local Tchebichef moments (LTMs) are used to embed and detect watermark. These proposed algorithms are evaluated theoretically and experimentally, and are compared with two representative schemes. Experiments are carried out on a set of standard test images, and the preliminary results demonstrate that the developed algorithms improve the performance over these two representative image watermarking schemes in terms of robustness. Towards the overall robustness against geometric distortions and common image processing operations, the LTMs-based method has an advantage over the ACRs-based method.


Feature Point Image Watermark Watermark Scheme Geometric Distortion Watermark Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lichtenauer, J., Setyawan, I., Kalker, T., Lagendijk, R.: Exhaustive geometrical search and false positive watermark detection probability. In: Proc. SPIE-Security and Watermarking of Multimedia Contents V, vol. 5020, pp. 203–214 (2003)Google Scholar
  2. 2.
    Miller, M.L., Bloom, J.A.: Computing the probability of false watermark detection. In: Proc. Third Int. Workshop on Information Hiding, pp. 146–158 (1999)Google Scholar
  3. 3.
    O’Ruanaidh, J.J.K., Pun, T.: Rotation, scale and translation invariant digital image watermarking. Signal Processing 66(3), 303–317 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lin, C.Y., Wu, M., Bloom, J.A., et al.: Rotation, scale, and translation-resilient public watermarking for images. In: Proc. SPIE-Security and Watermarking of Multimedia Contents II, vol. 3971, pp. 90–98 (2000)Google Scholar
  5. 5.
    Zheng, D., Zhao, J., Saddik, A.: RST-invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE Trans. Circuits Syst. Video Technol. 13(8), 753–765 (2003)CrossRefGoogle Scholar
  6. 6.
    Pereira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE Trans. Image Process. 9(6), 1123–1129 (2000)CrossRefGoogle Scholar
  7. 7.
    Pereira, S., Pun, T.: An iterative template matching algorithm using the chirp-Z transform for digital image watermarking. Pattern Recognit. 33(99), 173–175 (2000)CrossRefGoogle Scholar
  8. 8.
    Kutter, M.: Watermarking resisting to translation, rotation and scaling. In: Proc. SPIE-Multimedia Systems and Applications, vol. 3528, pp. 423–431 (1999)Google Scholar
  9. 9.
    Delannay, D., Macq, B.: Generalizaed 2-D cyclic patterns for secret watermark generation. In: Proc. IEEE Int. Conf. Image Process, pp. 77–79 (2000)Google Scholar
  10. 10.
    Dugelay, J.-L., Roche, S., Rey, C., et al.: Still-image watermarking robust to local geometric distortions. IEEE Trans. Image Process. 15(9), 2831–2842 (2006)CrossRefGoogle Scholar
  11. 11.
    Xiang, S., Kim, H.J., Huang, J.: Invariant image watermarking based on statistical features in the low-frequency domain. IEEE Trans. Circuits Syst. Video Technol. 18(6), 777–790 (2008)CrossRefGoogle Scholar
  12. 12.
    Kutter, M., Bhattacharjee, S.K., Ebrahimi, T.: Towards second generation watermarking schemes. In: Proc. IEEE Int. Conf. Image Process, pp. 320–323 (1999)Google Scholar
  13. 13.
    Alghoniemy, M., Tewfik, A.: Geometric distortion correction through image normalization. In: Proc. IEEE Int. Conf. Multimedia Expo., vol. 3, pp. 1291–1294 (2000)Google Scholar
  14. 14.
    Kim, H.S., Lee, H.K.: Invariant image watermark using Zernike moments. IEEE Trans. Circuits Syst. Video Technol. 13(8), 766–775 (2003)CrossRefGoogle Scholar
  15. 15.
    Alghoniemy, M., Tewfik, A.H.: Geometric invariance in image watermarking. IEEE Trans. Image Process. 13(2), 145–153 (2004)CrossRefGoogle Scholar
  16. 16.
    Dong, P., Brankov, J.G., Galatsanos, N.P., et al.: Affine transformation resistant watermarking based on image normalization. IEEE Trans. Image Process. 14(12), 2140–2150 (2005)CrossRefGoogle Scholar
  17. 17.
    Nikolaidis, A., Pitas, I.: Region-based image watermarking. IEEE Trans. Image Process. 13(2), 145–153 (2004)CrossRefGoogle Scholar
  18. 18.
    Lee, H.-Y., Kim, H., Lee, H.-K.: Robust image watermarking using local invariant features. Optical Engineering 45(3), 1–9 (2006)CrossRefGoogle Scholar
  19. 19.
    Bas, P., Chassery, J.-M., Macq, B.: Geometrically invariant watermarking using feature points. IEEE Trans. Image Process. 11(9), 1014–1028 (2002)CrossRefGoogle Scholar
  20. 20.
    Tang, C.W., Hang, H.M.: A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process. 51(4), 950–959 (2003)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Seo, J.S., Yoo, C.D.: Image watermarking based on invariant regions of scale-space representation. IEEE Trans. Signal Process. 54(4), 1537–1543 (2006)CrossRefGoogle Scholar
  22. 22.
    Wang, X., Wu, J., Niu, P.: A new digital image watermarking algorithm resilient to desynchronization attacks. IEEE Trans. Inf. Forens. Security 2(4), 655–663 (2007)CrossRefGoogle Scholar
  23. 23.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. IEEE Int. Conf. Computer Vision, vol. 1, pp. 525–531 (2001)Google Scholar
  24. 24.
    Lindeberg, T., Garding, J.: Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image Vis. Comput. 15, 415–434 (1997)CrossRefGoogle Scholar
  25. 25.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Baumberg, A.: Reliable feature matching across widely separated views. In: Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, vol. 1, pp. 774–781 (2000)Google Scholar
  27. 27.
    Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. Applied Statistics 18(1), 54–64 (1969)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Mikolajczyk, K., Schmid, C.: A comparison of affine region detectors. Int. J. Computer Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  29. 29.
    Cheng, D., Gao, X., Li, X., Tao, D.: Geometrically invariant watermarking using affine covariant regions. In: Proc. IEEE Int. Conf. Image Processing, pp. 413–416 (2008)Google Scholar
  30. 30.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  31. 31.
    Voloshynovskiy, S., Herrigel, A., Baumgrtner, N., Pun, T.: A Stochastic Approach to Content Adaptive Digital Image Watermarking. In: Proc. Third Int. Workshop Information Hiding, pp. 212–236 (1999)Google Scholar
  32. 32.
    Lu, C.S., Sun, S.W., Hsu, C.Y., Chang, P.C.: Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection. IEEE Trans. Multimedia 84, 668–685 (2006)Google Scholar
  33. 33.
    Cheng, D., Gao, X., Li, X., Tao, D.: A local Tchebichef moments-based robust image watermarking. Signal Processing 89(8), 1531–1539 (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Shu, H.Z., Luo, L.M., Coatrieux, J.L.: Moment-based approaches in image-Part I: Basic feature. IEEE Eng. Med. Biol. Mag. 26(5), 70–75 (2007)CrossRefGoogle Scholar
  35. 35.
    Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Mukundan, R.: Some computational aspects of discrete orthonormal moments. IEEE Trans. Image Process. 13(8), 1055–1059 (2004)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Chen, B., Wornall, G.W.: Quantization index modulation methods: a class of provably good methods for digital watermarking and information hiding. IEEE Trans. Inf. Theory 47(4), 1423–1443 (2001)CrossRefzbMATHGoogle Scholar
  38. 38.
    Xin, Y.Q., Liao, S., Pawlak, M.: Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recognition 40(12), 3740–3752 (2007)CrossRefzbMATHGoogle Scholar
  39. 39.
    Choi, Y., Aizawa, K.: Watermark detection based on error probability and its applications to video watermarking. Electron. Commun. Jpn. 87(6), 66–76 (2004)CrossRefGoogle Scholar
  40. 40.
    Petitcolas, F.A.P.: Watermarking schemes evaluation. IEEE Signal Process. Mag. 17(5), 58–64 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cheng Deng
    • 1
  • Xinbo Gao
    • 1
  • Xuelong Li
    • 2
  • Dacheng Tao
    • 3
  1. 1.School of Electronic EngineeringXidian UniversityXi’anP.R. China
  2. 2.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anP.R. China
  3. 3.School of Computer EngineeringNanyang Technological UniversitySingapore

Personalised recommendations