Scalable Video Coding and Its Applications

  • Naeem Ramzan
  • Ebroul Izquierdo
Part of the Studies in Computational Intelligence book series (SCI, volume 346)

Abstract

Scalable video coding provides an efficient solution when video is delivered through heterogeneous networks to terminals with different computational and display capabilities. Scalable video bitstream can easily be adapted to required spatio-temporal resolution and quality, according to the transmission requirements. In this chapter, the Wavelet-based Scalable Video Coding (W-SVC) architecture is presented in detail. The W-SVC framework is based on wavelet based motion compensated approaches. The practical capabilities of the W-SVC are also demonstrated by using the error resilient transmission and surveillance applications. The experimental result shows that the W-SVC framework produces improved performance than existing method and provides full flexible architecture with respect to different application scenarios.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mrak, M., Sprljan, N., Zgaljic, T., Ramzan, N., Wan, S., Izquierdo, E.: Performance evidence of software proposal for Wavelet Video Coding Exploration group. In: 76th MPEG Meeting ISO/IEC JTC1/SC29/WG11/ MPEG2006/M13146, Montreux, Switzerland (April 2006)Google Scholar
  2. 2.
    Ohm, J.-R.: Three-dimensional Subband Coding with Motion Compensation. IEEE Trans. Image Processing 3, 559–571 (1994)CrossRefGoogle Scholar
  3. 3.
    Sweldens, W., Schroder, P.: Building your own wavelets at home. Wavelets in Computer Graphics, ACM SIGGRAPH Course notes, 15–87 (1996)Google Scholar
  4. 4.
    Zgaljic, T., Sprljan, N., Izquierdo, E.: Bitstream syntax description based adaptation of scalable video. In: Integration of Knowledge, Semantics and Digital Media Technology (EWIMT 2005), November 30, pp. 173–176 (2005)Google Scholar
  5. 5.
    Adami, N., Signoroni, A., Leonardi, R.: State-of-the-Art and Trends in Scalable Video Compression With Wavelet-Based Approaches. IEEE Transc. on Circuits and Systems for Video Technology 17(9) (September 2007)Google Scholar
  6. 6.
    Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Processing 9, 1158–1170 (2000)CrossRefGoogle Scholar
  7. 7.
    Kondi, L.P., Ishtiaq, F., Katsaggelos, A.K.: Joint source-channel coding for motion-compensated DCT-based SNR scalable video. IEEE Trans. Image Process. 11(9), 1043–1052 (2002)CrossRefGoogle Scholar
  8. 8.
    Ramzan, N., Wan, S., Izquierdo, E.: Joint Source-Channel Coding for Wavelet Based Scalable Video Transmission using an Adaptive Turbo Code. EURASIP Journal on Image and Video Processing, Article ID 47517, 12 pages (2007)Google Scholar
  9. 9.
    Zgaljic, T., Ramzan, N., Akram, M., Izquierdo, E., Caballero, R., Finn, A., Wang, H., Xiong, Z.: Surveillance Centric Coding. In: Proc. Of 5th International Conf. on Visual Information Engineering, VIE (July 2008)Google Scholar
  10. 10.
    Kim, J., Mersereau, R.M., Altunbasak, Y.: Error-resilient image and video transmission over the Internet using unequal error protection. IEEE Trans. Image Process. 12(2), 121–131 (2003)CrossRefGoogle Scholar
  11. 11.
    Thomos, N., Boulgouris, N.V., Strintzis, M.G.: Wireless image transmission using turbo codes and optimal unequal error protection. IEEE Trans. Image Process. 14(11), 1890–1901 (2005)CrossRefGoogle Scholar
  12. 12.
    Banister, B.A., Belzer, B., Fischer, T.R.: Robust video transmission over binary symmetric channels with packet erasures. In: Proc. Data Compression Conference, DCC 2002, pp. 162–171 (2002)Google Scholar
  13. 13.
    Berrou, C., Glavieux, A.: Near-optimum error-correction coding and decoding: Turbo codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)CrossRefGoogle Scholar
  14. 14.
    Doulliard, C., Berrou, C.: Turbo codes with rate-m/(m+1) constituent convolutional codes. IEEE Trans. Commun. 53(10), 1630–1638 (2005)CrossRefGoogle Scholar
  15. 15.
    Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 747–757 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Naeem Ramzan
    • 1
  • Ebroul Izquierdo
    • 1
  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations