Skip to main content

Visual Quality Evaluation for Images and Videos

  • Chapter
Book cover Multimedia Analysis, Processing and Communications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 346))

Abstract

Information is exploding with technology progress. Compared with text and audio, image and video can represent information more vividly, which makes visual quality one of the most important aspects in determining user experience. A good visual quality evaluation method can assist in monitoring the quality of multimedia services and boosting user experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahumada, J.A.J., Peterson, H.A.: A Visual Detection Model for DCT Coefficient Quantization. In: The 9th AIAA Computing in Aerospace Conference, pp. 314–318 (1993)

    Google Scholar 

  2. Ahumada, J.A.J., Beard, B.L., Eriksson, R.: Spatio-temporal Discrimination Model Predicts Temporal Masking Functions. In: Proc. SPIE (1998), doi:10.1117/12.320103

    Google Scholar 

  3. AVS Video Expert Group, Draft of Advanced Audio Video Coding – Part 2: video, AVS_N1063 (2003)

    Google Scholar 

  4. AVS Video Expert Group, Information technology - Advanced coding of audio and video - Part 2: Video, GB/T 20090.2-2006 (2006)

    Google Scholar 

  5. Babu, R.V., Perkis, A.: An HVS-based no-reference Perceptual Quality Assessment Of Jpeg Coded Images Using Neural Networks. In: Proceedings of the International Conference on Image Processing, vol. 1, pp. 433–436 (2005)

    Google Scholar 

  6. Bjontegaard, G.: Calculation of average PSNR differences between RD curves, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Doc. VCEG-M33 (2001)

    Google Scholar 

  7. Buccigrossi, R.W., Simoncelli, E.P.: Image Compression Via Joint Statistical Characterization in the Wavelet Domain. IEEE Transactions on Image Processing 8(12), 1688–1701 (1999)

    Article  Google Scholar 

  8. Callet, P.L., Autrusseau, F.: Subjective Quality Assessment IRCCyN/IVC Database (2005), http://www.irccyn.ec-nantes.fr/ivcdb/

  9. Caviedes, J., Oberti, F.: A New Sharpness Metric Based on Local Kurtosis, Edge and Energy Information. Signal Processing-Image Communication 19(2), 147–161 (2004)

    Article  Google Scholar 

  10. Chandler, D.M., Hemami, S.S.: A57 Database, http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html

  11. Cheng, H., Lubin, J.: Reference Free Objective Quality Metrics for Mpeg Coded Video. In: Human Vision and Electronic Imaging X, vol. 5666, pp. 160–167 (2005)

    Google Scholar 

  12. Chou, C.H., Li, Y.C.: A Perceptually Tuned Subband Image Coder Based on the Measure of Just-Noticeable-Distortion Profile. IEEE Transactions on Circuits and Systems for Video Technology 5(6), 467–476 (1995)

    Article  Google Scholar 

  13. Daly, S.: The Visible Differences Predictor - an Algorithm for the Assessment of Image Fidelity. In: Human Vision, Visual Processing, and Digital Display III, vol. 1666, pp. 2–15 (1992)

    Google Scholar 

  14. Daly, S.: Engineering Observations from Spatiovelocity and Spatiotemporal Visual Models. In: Human Vision and Electronic Imaging III, vol. 3299, pp. 180–191 (1998)

    Google Scholar 

  15. Eskicioglu, A.M., Fisher, P.S.: Image Quality Measures and their Performance. IEEE Transactions on Communications 43(12), 2959–2965 (1995)

    Article  Google Scholar 

  16. Fan, L., Ma, S.W., Wu, F.: Overview of AVS Video Standard. In: Proceedings of the IEEE International Conference on Multimedia and Expo., vol. 1, pp. 423–426 (2004)

    Google Scholar 

  17. Foley, J.M.: Human Luminance Pattern-Vision Mechanisms - Masking Experiments Require a New Model. Journal of the Optical Society of America a-Optics Image Science and Vision 11(6), 1710–1719 (1994)

    Article  Google Scholar 

  18. Girod, B.: What’s Wrong With Mean Squared Error? In: Watson, A.B. (ed.) Digital Images and Human Vision. The MIT Press, Cambridge (1993)

    Google Scholar 

  19. Grice, J., Allebach, J.P.: The Print Quality Toolkit: An Integrated Print Quality Assessment Tool. Journal of Imaging Science and Technology 43(2), 187–199 (1999)

    Google Scholar 

  20. Horita, Y., et al.: MICT Image Quality Evaluation Database, http://mict.eng.u-toyama.ac.jp/mict/index2.html

  21. ISO/IEC 14496-10, Coding of Audio-visual Objects - Part 10: Advanced Video Coding. International Organization for Standardization, Geneva, Switzerland (2003)

    Google Scholar 

  22. ITU-T FG IPTV-ID-0082. Introductions for AVS-P2. 1st FG IPTV Meeting, ITU, Geneva, Switzerland (2006)

    Google Scholar 

  23. ITU-R Report BT.1082-1 Studies Toward The Unification of Picture Assessment Methodology. ITU, Geneva, Switzerland (1990)

    Google Scholar 

  24. ITU-R Recommendation BT.815-1 Specification of a Signal for Measurement of the Contrast Ratio Of Displays. ITU, Geneva, Switzerland (1994)

    Google Scholar 

  25. ITU-R Recommendation BT.710-4 Subjective Assessment Methods for Image Quality in High-Definition Television. ITU, Geneva, Switzerland (1998)

    Google Scholar 

  26. ITU-R Recommendation BT.500-11 Methodology for the Subjective Assessment of the Quality of Television Pictures. ITU, Geneva, Switzerland (2002)

    Google Scholar 

  27. ITU-R Recommendation BT.1683 Objective Perceptual Video Quality Measurement Techniques for Standard Definition Digital Broadcast Television in the Presence of a Full Reference. ITU, Geneva, Switzerland (2004)

    Google Scholar 

  28. ITU-R Recommendation BT.814-2 Specifications and Alignment Procedures for Setting of Brightness and Contrast of Displays. ITU, Geneva, Switzerland (2007)

    Google Scholar 

  29. ITU-T Recommendation P.910 Subjective Video Quality Assessment Methods for Multimedia Applications. ITU, Geneva, Switzerland (2008)

    Google Scholar 

  30. Kanumuri, S., et al.: Modeling Packet-loss Visibility in MPEG-2 Video. IEEE Transactions on Multimedia 8(2), 341–355 (2006)

    Article  Google Scholar 

  31. Lai, Y.K., Kuo, C.C.J.: A Haar Wavelet Approach to Compressed Image Quality Measurement. Journal of Visual Communication and Image Representation 11(1), 17–40 (2000)

    Article  Google Scholar 

  32. Lambrecht, C.J.V.: Color Moving Pictures Quality Metric. In: Proceedings of International Conference on Image Processing, vol. I, pp. 885–888 (1996)

    Google Scholar 

  33. Legge, G.E., Foley, J.M.: Contrast Masking in Human-Vision. Journal of the Optical Society of America 70(12), 1458–1471 (1980)

    Article  Google Scholar 

  34. Li, X.: Blind Image Quality Assessment. In: Proceedings of the International Conference on Image Processing, vol. 1, pp. 449–452 (2002)

    Google Scholar 

  35. Lin, W.S.: Computational Models for Just-Noticeable Difference. In: Wu, H.R. (ed.) Digital video image quality and perceptual coding. CRC Press, Boca Raton (2005)

    Google Scholar 

  36. Lin, W.S.: Gauging Image and Video Quality in Industrial Applications. In: Liu, Y. (ed.), SCI. Springer, Berlin (2008)

    Google Scholar 

  37. Lin, W.S., Li, D., Ping, X.: Visual Distortion Gauge Based on Discrimination of Noticeable Contrast Changes. IEEE Transactions on Circuits and Systems for Video Technology 15(7), 900–909 (2005)

    Article  Google Scholar 

  38. Lu, Z.K., et al.: Perceptual Quality Evaluation on Periodic Frame-dropping Video. In: Proceedings of the IEEE International Conference on Image Processing, vol. 3, pp. 433–436 (2007)

    Google Scholar 

  39. Lubin, J.: The Use of Psychophysical Data and Models in the Analysis of Display System Performance. In: Watson, A.B. (ed.) Digital Images and Human Vision, The MIT Press, Cambridge (1993)

    Google Scholar 

  40. Lukas, F.X.J.: Picture Quality Prediction Based on a Visual Model. IEEE Transactions on Communications 30(7), 1679–1692 (1982)

    Article  Google Scholar 

  41. Mannos, J.L., Sakrison, D.J.: The Effects of a Visual Fidelity Criterion on Encoding of Images. IEEE Transactions on Information Theory 20(4), 525–536 (1974)

    Article  MATH  Google Scholar 

  42. Marichal, X.M., Ma, W.Y., Zhang, H.J.: Blur Determination in the Compressed Domain Using Dct Information. In: Proceedings of the International Conference on Image Processing, vol. 2, pp. 386–390 (1999)

    Google Scholar 

  43. Marziliano, P., et al.: Perceptual Blur and Ringing Metrics: Application to JPEG2000. Signal Processing-Image Communication 19(2), 163–172 (2004)

    Article  Google Scholar 

  44. Masry, M., Hemami, S.S., Sermadevi, Y.: A Scalable Wavelet-based Video Distortion Metric and Applications. IEEE Transactions on Circuits and Systems for Video Technology 16(2), 260–273 (2006)

    Article  Google Scholar 

  45. Miyahara, M., Kotani, K., Algazi, V.R.: Objective Picture Quality Scale (Pqs) for Image Coding. IEEE Transactions on Communications 46(9), 1215–1226 (1998)

    Article  Google Scholar 

  46. Moorthy, A.K., Bovik, A.C.: Perceptually Significant Spatial Pooling Techniques for Image Quality Assessment. In: Proceedings of the SPIE Human Vision and Electronic Imaging XIV, vol. 7240, pp. 724012–724012-11 (2009)

    Google Scholar 

  47. Nadenau, M.J., Reichel, J., Kunt, M.: Performance Comparison of Masking Models Based on A New Psychovisual Test Method With Natural Scenery Stimuli. Signal Processing-Image Communication 17(10), 807–823 (2002)

    Article  Google Scholar 

  48. Oguz, S.H., Hu, Y.H., Nguyen, T.Q.: Image Coding Ringing Artifact Reduction Using Morphological Post-Filtering. In: Proceedings of the IEEE Second Workshop on Multimedia Signal Processing, pp. 628–633 (1998)

    Google Scholar 

  49. Ong, E.P., et al.: A No-reference Quality Metric For Measuring Image Blur. In: Proceedings of the Seventh International Symposium on Signal Processing and Its Applications, vol. 1, pp. 469–472 (2003)

    Google Scholar 

  50. Pappas, T.N., Safranek, R.J.: Perceptual Criteria for Image Quality Evaluation. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing. Academic Press, Orlando (2000)

    Google Scholar 

  51. Parmar, M., Reeves, S.J.: A Perceptually Based Design Methodology for Color Filter Arrays. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing III, pp. 473–476 (2004)

    Google Scholar 

  52. Pastrana-Vidal, R.R., et al.: Sporadic Frame Dropping Impact on Quality Perception. In: Human Vision and Electronic Imaging IX, vol. 5292, pp. 182–193 (2004)

    Google Scholar 

  53. Pastrana-Vidal, R.R., Gicquel, J.C.: Automative Quality Assessment of Video Fluidity Impairments Using a No-reference Metric. In: Proceedings of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics (2006)

    Google Scholar 

  54. Peli, E.: Contrast in Complex Images. Journal of the Optical Society of America a-Optics Image Science and Vision 7(10), 2032–2040 (1990)

    Article  Google Scholar 

  55. Pinson, M.H., Wolf, S.: A New Standardized Method for Objectively Measuring Video Quality. IEEE Transactions on Broadcasting 50(3), 312–322 (2004)

    Article  Google Scholar 

  56. Ponomarenko, N., et al .: Tampere Image Database 2008 TID2008, version 1.0 (2008), http://www.ponomarenko.info/tid2008.htm

  57. Poynton, C.: Gamma. In: Poynton, C. (ed.) A Technical Introduction to Digital Video. Wiley, New York (1996)

    Google Scholar 

  58. Seshadrinathan, K., Bovik, A.C.: A Structural Similarity Metric for Video Based on Motion Models. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 869–872 (2007)

    Google Scholar 

  59. Sheikh, H.R., et al.: LIVE Image Quality Assessment Database, Release 2 (2005), http://live.ece.utexas.edu/research/quality

  60. Sheikh, H.R., Bovik, A.C.: Image Information and Visual Quality. IEEE Transactions on Image Processing 15(2), 430–444 (2006)

    Article  Google Scholar 

  61. Sheikh, H.R., Bovik, A.C., Cormack, L.: No-reference Quality Assessment Using Natural Scene Statistics: JPEG2000. IEEE Transactions on Image Processing 14(11), 1918–1927 (2005)

    Article  Google Scholar 

  62. Sullivan, G.J., Topiwala, P.N., Luthra, A.: The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to The Fidelity Range Extensions. In: Proceedings of the SPIE Applications of Digital Image Processing XXVII, vol. 5558, pp. 454–474 (2004)

    Google Scholar 

  63. Tan, K.T., Ghanbari, M., Pearson, D.E.: An Objective Measurement Tool for MPEG Video Quality. Signal Processing 70(3), 279–294 (1998)

    Article  MATH  Google Scholar 

  64. Teo, P.C., Heeger, D.J.: Perceptual Image Distortion. In: Proceedings of IEEE International Conference on Image Processing, vol. 2, pp. 982–986 (1994)

    Google Scholar 

  65. Teo, P.C., Heeger, D.J.: Perceptual Image Distortion. In: Human Vision, Visual Processing, and Digital Display V, vol. 2179, pp. 127–141 (1994)

    Google Scholar 

  66. Verscheure, O., Frossard, P., Hamdi, M.: User-Oriented QoS Analysis in MPEG-2 Video Delivery. Real-Time Imaging 5(5), 305–314 (1999)

    Article  Google Scholar 

  67. VQEG, Final report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment II. Video Quality Expert Group (2003), http://www.its.bldrdoc.gov/vqeg/projects/frtv_phaseII/downloads/VQEGII_Final_Report.pdf (cited August 5, 2009)

  68. VQEG, RRNR-TV Group Test Plan, Version 2.0. Video Quality Expert Group (2007), ftp://vqeg.its.bldrdoc.gov/Documents/Projects/rrnr-tv/RRNR-tv_draft_2.0_changes_accepted.doc (cited August 5, 2009)

  69. VQEG, Test Plan for Evaluation of Video Quality Models for Use with High Definition TV Content, Draft Version 3.0.Video Quality Expert Group (2009), ftp://vqeg.its.bldrdoc.gov/Documents/Projects/hdtv/VQEG_HDTV_testplan_v3.doc (cited August 5, 2009)

  70. VQEG, Hybrid Perceptual/Bitstream Group Test Plan, Version 1.3. Video Quality Expert Group (2009), ftp://vqeg.its.bldrdoc.gov/Documents/Projects/hybrid/VQEG_hybrid_testplan_v1_3_changes_highlighted.doc (cited August 5, 2009)

  71. Vlachos, T.: Detection of Blocking Artifacts in Compressed Video. Electronics Letters 36(13), 1106–1108 (2000)

    Article  Google Scholar 

  72. Wang, X.F., Zhao, D.B.: Performance Comparison of AVS and H. 264/AVC Video Coding Standards. Journal of Computer Science and Technology 21(3), 310–314 (2006)

    Article  Google Scholar 

  73. Wang, Z., Bovik, A.C.: A Universal Image Quality Index. IEEE Signal Processing Letters 9(3), 81–84 (2002)

    Article  Google Scholar 

  74. Wang, Z., Shang, X.L.: Spatial Pooling Strategies for Perceptual Image Quality Assessment. In: Proceedings of the International Conference on Image Processing, October7-10, vol. 1, pp. 2945–2948 (2006)

    Google Scholar 

  75. Wang, Z., Simoncelli, E.P.: Local Phase Coherence and the Perception of Blur. Advances in Neural Information Processing Systems 16, 1435–1442 (2004)

    Google Scholar 

  76. Wang, Z., Bovik, A.C., Evans, B.L.: Blind Measurement of Blocking Artifacts in Images. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 981–984 (2000)

    Google Scholar 

  77. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: from Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

  78. Wang, Z., Lu, L., Bovik, A.C.: Video Quality Assessment Based on Structural Distortion Measurement. Signal Processing: Image Communication 19(2), 121–132 (2004)

    Article  Google Scholar 

  79. Watson, A.B.: The Cortex Transform - Rapid Computation of Simulated Neural Images. In: Computer Vision Graphics and Image Processing, vol. 39(3), pp. 311–327 (1987)

    Google Scholar 

  80. Watson, A.B.: DCTune: A Technique for Visual Optimization of Dct Quantization Matrices for Individual Images. In: Proc. Soc. Information Display Dig. Tech. Papers XXIV, pp. 946–949 (1993)

    Google Scholar 

  81. Watson, A.B., Solomon, J.A.: Model of Visual Contrast Gain Control and Pattern Masking. Journal of the Optical Society of America a-Optics Image Science and Vision 14(9), 2379–2391 (1997)

    Article  Google Scholar 

  82. Watson, A.B., Borthwick, R., Taylor, M.: Image Quality and Entropy Masking. In: Proc. SPIE (1997), doi:10.1117/12.274501

    Google Scholar 

  83. Watson, A.B., Hu, J., McGowan, J.F.: Digital Video Quality Metric Based on Human Vision. Journal of Electronic Imaging 10(1), 20–29 (2001)

    Article  Google Scholar 

  84. Winkler, S.: A Perceptual Distortion Metric for Digital Color Video. In: Human Vision and Electronic Imaging IV, vol. 3644, pp. 175–184 (1999)

    Google Scholar 

  85. Winkler, S.: Issues in Vision Modeling for Perceptual Video Quality Assessment. Signal Processing 78(2), 231–252 (1999)

    Article  MATH  Google Scholar 

  86. Winkler, S.: Metric Evaluation. In: Winkler, S. (ed.) Digital Video Quality: Vision Models and Metrics. Wiley, New York (2005)

    Google Scholar 

  87. Winkler, S.: Vision. In: Winkler, S. (ed.) Digital Video Quality: Vision Models and Metrics. Wiley, New York (2005)

    Google Scholar 

  88. Winkler, S.: Digital Video Quality: Vision Models and Metrics. Wiley, New York (2005)

    Google Scholar 

  89. Winkler, S.: Perceptual Video Quality Metrics - a Review. In: Wu, H.R. (ed.) Digital Video Image Quality and Perceptual Coding. CRC Press, Boca Raton (2005)

    Google Scholar 

  90. Winkler, S., Mohandas, P.: The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics. IEEE Transactions on Broadcasting 54(3), 660–668 (2008)

    Article  Google Scholar 

  91. Wu, H.R., Yuen, M.: A Generalized Block-edge Impairment Metric for Video Coding. IEEE Signal Processing Letters 4(11), 317–320 (1997)

    Article  Google Scholar 

  92. Yang, K.C., et al.: Perceptual Temporal Quality Metric for Compressed Video. IEEE Transactions on Multimedia 9(7), 1528–1535 (2007)

    Article  Google Scholar 

  93. Yu, L., et al.: Overview of AVS-Video: Tools, Performance and Complexity. In: Proceedings of the SPIE Visual Communications and Image Processing, vol. 5960, pp. 679–690 (2005)

    Google Scholar 

  94. Yu, Z.H., et al.: Vision-model-based Impairment Metric to Evaluate Blocking Artifacts in Digital Video. Proceedings of the IEEE 90(1), 154–169 (2002)

    Article  Google Scholar 

  95. Zhai, G.T., et al.: No-reference Noticeable Blockiness Estimation in Images. Signal Processing-Image Communication 23(6), 417–432 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, S., Mak, L.CM., Ngan, K.N. (2011). Visual Quality Evaluation for Images and Videos. In: Lin, W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds) Multimedia Analysis, Processing and Communications. Studies in Computational Intelligence, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19551-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19551-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19550-1

  • Online ISBN: 978-3-642-19551-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics