Skip to main content

A Novel Reconfigurable Video Burst Processor Offering High QoS

  • Conference paper
Computer Networks and Information Technologies (CNC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 142))

  • 900 Accesses

Abstract

Real-time video processing is till tode a formidable task thanks to the strict requirement on latency control and packet loss minimization. Burst processing has come to the rescue by offering buffer less operation and separation of control and data information. We report here for the first time a novel statistical embedded burst scheduling method suitable for processing class-differentiated video channels. The method is based on optimized Markov chains where the initial scheduled Markov transition probabilities are subsequently adaptively reconfigured by the scheduler to maintain the best system QoS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoo, M., Qiao, C., Dixit, S.: QoS performance of optical burst switching in IP-over-WDM networks. IEEE/OSA J. Lightwave Technology 18(10), 2062–2071 (2000)

    Google Scholar 

  2. Ben Yoo, S.J.: Optical packet and burst switching for the future photonic internet. IEEE/OSA J. Lightwave Technology 24(12), 4468–4492 (2006)

    Article  Google Scholar 

  3. Rasoul Safavian, S.: How to dimension wireless networks for packet data services with guaranteed QoS. Bechtel Telecommunications Technical Journal 3(1) (March 17-19, 2008)

    Google Scholar 

  4. Tomoyoshi, S., Kosuke, T.: Table-based QoS control for embedded real-time systems. In: Proc of the ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded Systems, pp. 65–72 (1999)

    Google Scholar 

  5. Jain, R., Hughes, C.J., Adve, S.V.: Soft Real-time Scheduling on Simulataneous multithreaded processors. In: Proc. of 23rd Real-time Systems Symposium (RTSS-23), pp. 134–135. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  6. Snaverly, A., Tullsen, D.M., Voelker, G.: Symbiotic job scheduling with priorities for a simultaneous multithreaded processor. In: Proc. of 9th International Conf. on Architectural Support for Programming Languages and Operating Systems, pp. 234–244. ACM Press, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bag, B., Jana, A.K., Pandit, M.K. (2011). A Novel Reconfigurable Video Burst Processor Offering High QoS. In: Das, V.V., Stephen, J., Chaba, Y. (eds) Computer Networks and Information Technologies. CNC 2011. Communications in Computer and Information Science, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19542-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19542-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19541-9

  • Online ISBN: 978-3-642-19542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics